Summary Profile of the Rivière des Outaouais Watershed

May 2015

Direction générale des politiques de l'eau

Credits page

Coordination and writing

This publication was produced by the Direction générale des politiques de l'eau in collaboration with the Direction régionale de l'analyse et de l'expertise de l'Outaouais, the Direction du Suivi de l'état de l'environnement of the Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC), and the Direction du Centre d'expertise hydrique du Québec.

Information

For information, contact the Information Centre of the Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques.

Phone:	418 521-3830
	1 800 561-1616 (toll free)
Fax:	418 646-5974
Email:	info@mddelcc.gouv.gc.ca
Web:	www.mddelcc.gouv.qc.ca

To obtain a copy of the document:

Direction générale des politiques de l'eau Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques 675 René-Lévesque Boulevard East, 8th Floor, Box 42 Québec, Québec G1R 5V7 Phone: 418 521-3885

Or

Visit our website http://www.mddelcc.gouv.qc.ca/eau/bassinversant/bassins/outaouais/portrait-sommaire-en.pdf

Reference to be cited

Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques. *Summary Profile of the Rivière des Outaouais Watershed*. 2015. 57 pages. [online]. <u>http://www.mddelcc.gouv.qc.ca/eau/bassinversant/bassins/outaouais/portrait-sommaire-en.pdf</u> (page consulted on day/month/year).

Legal deposit – 2015 Bibliothèque et Archives nationales du Québec ISBN 978-2-550-73028-6 (online)

All rights reserved for all countries.

© Gouvernement du Québec - 2015

Contents

1	1 Background	
2	2 General presentation of the watershed	9
	2.1 Location and description	
	2.2 Socio-economic profile	
	2.3 Biophysical environment	
	2.4 Land use	
	2.5 Historical background	
3	3 Surface water	
	3.1 Quantitative profile	
	3.1.1 Hydrographic network	
	3.1.2 Lakes	
	3.1.3 Reservoirs and dams	
	3.2 Qualitative profile	
	3.2.1 Water quality	
	3.2.2 Cyanobacteria	
	3.2.3 Lake acidity	
4	4 Groundwater	
5	5 Biodiversity	
	5.1 Special-status species	
	5.2 Forest wetlands	
	5.3 Designated protected areas	
6	6 Uses of the watershed	
	6.1 Drinking water	
	6.1.1 Administrative region of Outaouais	

6.1.	2 Administrative regions of Abitibi-Témiscamingue and Laurentides	
6.2	Municipal wastewater	
6.2.	1 Rivière des Outaouais watershed	
6.2.	2 Administrative region of Outaouais	
6.3	Industrial wastewater	
6.3.	1 Administrative region of Outaouais	
6.4	Water withdrawals	
6.5	Hydroelectricity	
6.6	Industry	
6.6.	1 Primary sector	
6.6.	2 Secondary sector	
6.6.	3 Pulp and paper sector	
6.6.	4 Lumber and wood products sector	
6.6.	5 Mines	32
6.7	Agriculture	
6.8	Recreational and vacation activities	
6.9	Wildlife harvesting activities	
7 Gov	/ernment measures	
7.1	Measures to reduce the discharge of untreated wastewater	
7.2	Measures to protect water supply sources and drinking water quality	
8 Gov	/ernance	40
8.1	Intergovernmental	40
8.2	Regional	41
9 Bib	liography	44
Appendi	x I. Special-status species (threatened, vulnerable or likely to be so designated) in	the Rivière de
Outaoua	is watershed	

	Wildlife species	.47
	Plant species	.49
Aŗ	opendix II. Characteristics of different types of wetlands	.57

List of Figures

Figure 1. Administrative boundaries in the Rivière des Outaouais watershed
Figure 2. Bioclimatic domains in the Rivière des Outaouais watershed
Figure 3. Land use in the Rivière des Outaouais watershed
Figure 4. Hydrographic network of the Rivière des Outaouais watershed 15
Figure 5. Bacteriological and physicochemical quality indices (BPQI ₆) at water quality sampling stations in the Rivière des Outaouais watershed
Figure 6. Recurrence of cyanobacteria outbreaks in water bodies of the Rivière des Outaouais watershed 20
Figure 7. Number of water bodies affected by blue-green algae, by sub-watershed 21
Figure 8. Levels of lake acidity in southern Québec. 22
Figure 9. Wetlands in the Rivière des Outaouais watershed
Figure 10. Relative numbers of wetland types in the Rivière des Outaouais watershed 25
Figure 11. Relative area of wetland types in the Rivière des Outaouais watershed
Figure 12. Protected areas listed in the Registre des aires protégées par désignation
Figure 13. Location and status of mining sites in the Rivière des Outaouais watershed
Figure 14. Recreational territories in the Rivière des Outaouais watershed
Figure 15. Number of fishing days per administrative region in 2012
Figure 16. Number of hunting days per administrative region in 2012
Figure 17. Number of captures per administrative region in 2012. 38
Figure 18. Territory concerned by the <i>Great Lakes–St. Lawrence River Basin Sustainable Water</i> <i>ResourcesAgreement</i>
Figure 19. Water management zones in the Rivière des Outaouais watershed 42

List of Tables

Table 1.	Demographic and territorial characteristics of administrative regions and regional co	unty
	municipalities in the Rivière des Outaouais watershed	. 10
Table 2.	Principal reservoirs of the Rivière des Outaouais watershed	. 16
Table 3.	Number and types of dams in the Rivière des Outaouais watershed	. 17
Table 4.	Categories of dam uses in the Rivière des Outaouais watershed	. 17
Table 5.	Protected areas in the Rivière des Outaouais watershed	. 26
Table 6.	Characteristics of the five pulp and paper mills in the Outaouais region	. 32
Table 7.	Characteristics of mining projects in the Rivière des Outaouais watershed	33
Table 8.	Recreational territories in the Rivière des Outaouais watershed	36

1 Background

Québec has common borders with Ontario, Labrador, New Brunswick and the American states of New York, Vermont, New Hampshire and Maine, with all of which it shares, to different degrees, cross-border drainage basins. Some of the latter are the subject of specific cooperation agreements between the governments concerned: examples include Lac Memphrémagog (Québec-Vermont), Lac Champlain (Québec-Vermont-New York) and the Great Lakes and St. Lawrence River Basin (Québec-Ontario-eight adjacent American states). For others, general agreements for environmental cooperation, in which cross-border matters related to water are addressed, have been signed between Québec and its neighbours (e.g. New Brunswick, Ontario). Additionally, Ontario and Québec intend to intensify their cooperation regarding Rivière des Outaouais.

It is in that context that the Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC) has prepared the present summary of the information available on the Québec portion of the Rivière des Outaouais watershed. It briefly describes the characteristics of the watershed that are of interest for integrated water management, while also outlining its physical, economic and social environment.

As much as possible, information is presented from the perspective of integrated management by drainage basin. However, certain data may be presented on a sectoral basis, by administrative boundaries or for the main section of the river as opposed to the entire watershed.

2 General presentation of the watershed

2.1 Location and description

Rivière des Outaouais is the principal tributary of the St. Lawrence River. Its watershed extends upstream from Lac des Deux Montagnes over an area of 146 334 km², of which 92 203 km² (65%) are in Québec, the rest (35%) being in Ontario. Rivière des Outaouais arises from Lac Capimitchigama, north of the Outaouais region. From there it flows for about 1130 km to its mouth at Carillon, where Hydro-Québec operates a hydroelectric plant. Over most of its length, Rivière des Outaouais forms the natural border between Québec and Ontario (MDDELCC, 2000).

The territory of the Rivière des Outaouais watershed covers six administrative regions, namely Outaouais, Laurentides, Abitibi-Témiscamingue, Lanaudière, Montérégie and Mauricie (Figure 1). It wholly or partly includes the territories of 20 regional county municipalities (MRCs). At the local level, there are 187 municipalities, 37 unorganized territories (6 of them aquatic) and 9 territories of Aboriginal communities.

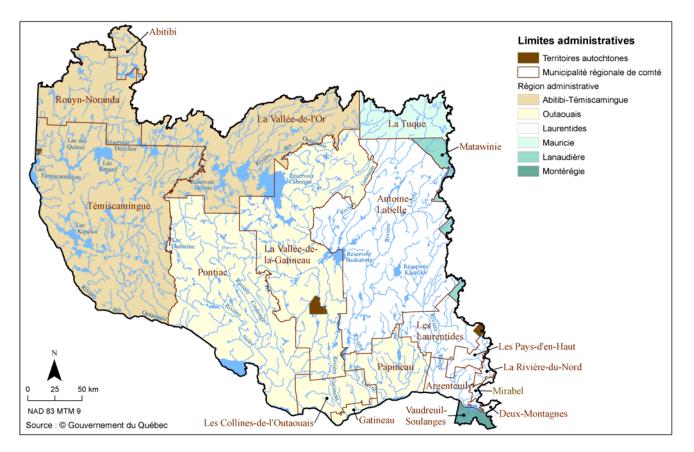


Figure 1. Administrative boundaries in the Rivière des Outaouais watershed.

The administrative regions of Outaouais and Laurentides lie completely (or 96% in the case of Laurentides) within the Rivière des Outaouais watershed. Abitibi-Témiscamingue is 57% within the watershed, while the remaining administrative regions overlap the basin only marginally. In Montérégie however, where 44% of the MRC of Vaudreuil-Soulanges is in the watershed, that portion is fairly populous, with nearly 64 000 inhabitants (Table 1).

Administrative Region MRC	Population density (inhab./km ²)	Population (inhab.)	Area (km ²)	Proportion in the Outaouais watershed
Outaouais	12.5	381 200	30 472	100%
Les Collines-de-Outaouais	24	48 717	2026	100%
Gatineau	802.2	274 367	342	100%
Papineau	7.9	22 781	2905	100%
Pontiac	1	14 331	12 827	100%
La Vallée-de-la-Gatineau	1.7	20 914	12 373	100%
Laurentides	28.3	580 966	25 544	96%
Antoine-Labelle	2.4	35 235	14 793	100%
Argenteuil	26.5	32 650	1231	100%
Deux-Montagnes	412.8	99 891	242	60%
La Rivière-du-Nord	273.3	122 436	448	54%
Les Laurentides	18.6	45 804	2462	100%
Les Pays-d'en-Haut	62.2	41 415	677	100%
Mirabel	94.8	45 888	484	36%
Lanaudière	39.7	488 927	12 309	7%
Matawinie	5.4	50 917	9433	9%
Abitibi-Témiscamingue	2.6	147 931	57 349	57%
Témiscamingue	1	16 346	16 329	100%
Rouyn-Noranda	7	41 904	5968	85%
Vallée-de-l'Or	1.8	43 813	24 108	39%
Abitibi	3.3	24 820	7620	15%
Montérégie	134.9	1 499 088	11 111	4%
Vaudreuil-Soulanges	170.4	145 514	854	44%
Mauricie	7.5	266 542	35 448	7%
La Tuque	0.6	15 195	25 965	9%

Table 1. Demographic and territorial characteristics of administrative regions and regional county municipalities (MRCs) in the Rivière des Outaouais watershed (ISQ, 2014).

2.2 Socio-economic profile

The total permanent population of the Rivière des Outaouais watershed is approximately 1 138 200. Table 1 presents the population estimate for each administrative region and MRC that is wholly or partly in the basin. As can be seen, Outaouais and Laurentides have the most inhabitants in the watershed, respectively 381 200 and 580 966. The highest concentration is in the urban agglomeration of Gatineau-Ottawa, with a total population of approximately 1 282 500. On the Québec side, the city of Gatineau is the most heavily populated in the watershed, with over 274 000 inhabitants. The demographic data shows that the population is not uniformly distributed in the watershed.

2.3 Biophysical environment

The landscape of the Rivière des Outaouais watershed is defined primarily by the southern Laurentians, the Abitibi lowlands in the upper portion, and the St. Lawrence lowlands further downstream.

Bioclimatic domains represent areas in which there is a particular type of vegetation due to specific climate conditions. Figure 2 shows that 85% of the watershed is deciduous forest and mixed forest, while 15% is boreal forest (balsam fir-white birch). From south to north, the basin is subdivided into five bioclimatic domains:

• Sugar maple-bitternut hickory

This bioclimatic domain is characterized by a southern flora with highly diversified forests. The characteristic species are bitternut hickory, black maple, swamp white oak, rock elm, pitch pine and numerous shrubs and herbaceous plants. Sugar maple, balsam fir and spruce are also found.

• Sugar maple-basswood

The flora of this bioclimatic domain is very diversified, including basswood, American ash, hop-hornbeam, butternut and sugar maple.

• Sugar maple-yellow birch

This bioclimatic domain lies further to the north. It is less diversified, with yellow birch and sugar maple in abundance. American beech, red oak and Eastern hemlock also grow in this zone.

• Balsam fir-yellow birch (mixed forest)

This domain is characterized by mixed stands of yellow birch and softwoods, such as balsam fir, white spruce and white cedar. Sugar maple are also found.

• Balsam fir-white birch (boreal forest)

This domain occupies the most northern part of the territory. It is dominated by stands of balsam fir and white spruce mixed with white birch. Also found are yellow birch and red maple in the southern portion. Here as in the balsam fir-yellow birch domain, forest fires and outbreaks of spruce budworm ensure forest regeneration.

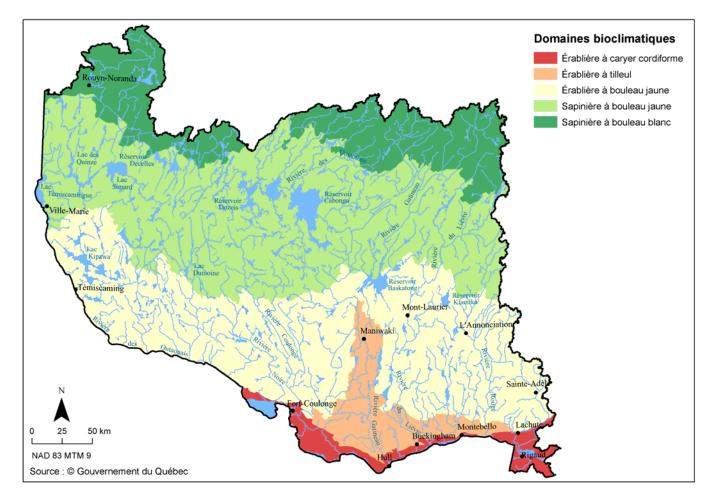


Figure 2. Bioclimatic domains in the Rivière des Outaouais watershed.

2.4 Land use

Figure 3 presents the geographical distribution of land uses (MDDELCC, 2014k). As is clear from the map, forests dominate, covering 73% of the territory. Areas of harvested and regenerating forest add 4% to that figure.

The hydrographic network (rivers, lakes, wetlands) occupies 19% of the watershed. Agriculture is generally conducted furthest downstream, occupying 3% of the territory. Urbanized areas are also downstream, accounting for 1% of the territory. As mentioned earlier, the highest population density is in the Gatineau-Ottawa area. This is where most problems with water quality occur.

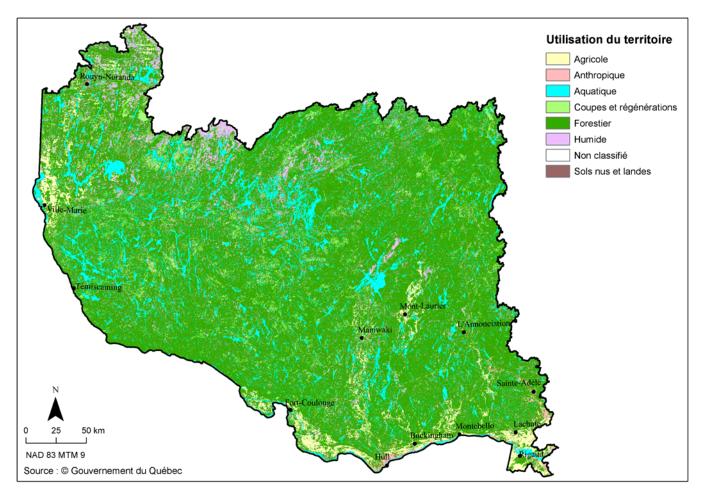


Figure 3. Land use in the Rivière des Outaouais watershed (MDDELCC, 2014k).

2.5 Historical background

As a navigable waterway, Rivière des Outaouais has always served to provide access to the interior. The First Nations and settlers used it extensively for travel and the fur trade.

In 1791, when the Constitutional Act came into force, Rivière des Outaouais became the dividing line defining the border between Lower Canada and Upper Canada (Outaouais Tourism, 2014). In the early 1900s a period of strong economic growth began as Philemon Wright developed the forest industry. Rivière des Outaouais and its

main tributaries were used for timber floating, an activity that continued until 1994 when floating activities finally stopped on Rivière du Lièvre.

The first industrialists quickly perceived the river's hydroelectric potential. In 1902, E. B. Eddy built the first dam on Rivière des Outaouais, at Chutes de la Chaudière in the heart of what is now Gatineau. From Témiscamingue to the mouth of the Outaouais, the river and its tributaries still feature today a total of 43 dams. Construction of the Carillon dam in the 1960s altered the landscape significantly, deepening inlets and flooding forests.

3 Surface water

3.1 Quantitative profile

3.1.1 Hydrographic network

The hydrographic network of Rivière des Outaouais includes 19 sub-watersheds over 2000 km² in size (Figure 4). On the Québec side, the main tributaries are the Gatineau, du Lièvre, Kipawa and Rouge rivers. Tributaries on the Ontario side include the Madawaska, Montréal, Blanche and Petawawa rivers. The sub-watersheds of the Rideau, Mississippi and South Nation rivers, though smaller, are important in socio-economic terms.

3.1.2 Lakes

The Rivière des Outaouais watershed contains over 90 000 lakes, of which fewer than 300 are more than 2 km² in size (MDDEFP¹, 2011). Among the largest are lakes Preissac, Dumoine, Opasatica and Trente et Un Milles, each being over 50 km² in size.

Most lakes in the watershed are on public lands. Some are on the territory of controlled zones (ZECs) or in the wildlife reserves of La Vérendrye and Papineau-Labelle.

Besides the natural lakes, there are some sixty reservoirs over 300 km² in size, including the Cabonga, Des Quinze, Baskatong, Témiscamingue and Dozois reservoirs (Table 2).

¹ The Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC), formerly known as the Ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) and as the Ministère du Développement durable, de l'Environnement, de la Faune et des Parcs (MDDEFP).

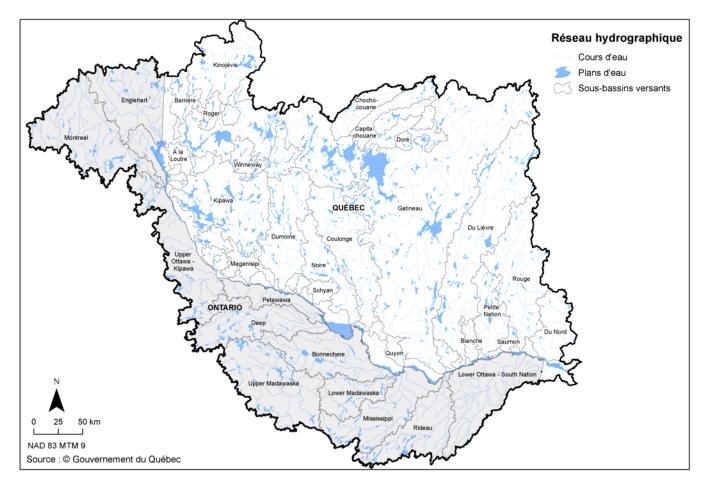


Figure 4. Hydrographic network of the Rivière des Outaouais watershed.

3.1.3 Reservoirs and dams

Reservoirs

The Rivière des Outaouais watershed contains 30 reservoirs that have a combined capacity of more than 14 billion cubic metres, resulting in the flow of the river being highly regulated. These reservoirs help control flooding and reduce the damage caused by it. However, more than 50% of the storage capacity is in the upper part of the watershed, making flood management in the lower part (the downstream) harder to achieve. Table 2 lists the 13 reservoirs with the greatest storage capacity.

River	Reservoir	Capacity (millions of m ³)	
Outaouais	Dozois	1863	
Outaouais	Rapide 7	371	
Outaouais	Quinze	1308	
Outaouais	Témiscamingue	1217	
Outaouais	Des Joachims	229	
Montréal	Lady Evelyn	308	
Kipawa	Kipawa	673	
Madawaska	Bark Lake	374	
Gatineau	Cabonga	1565	
Gatineau	Baskatong	2649	
Lièvre	Mitchinamecus	554	
Lièvre	Kiamika	379	
Lièvre	Poisson Blanc 625		

Table 2. Principal reservoirs of the Rivière des Outaouais watershed (from: Ottawa River Regulation Planning Board, 1984).

In 1983, the Ottawa River Regulation Planning Board was established by the governments of Canada, Québec and Ontario to ensure integrated flow management of the principal reservoirs of the Rivière des Outaouais watershed. The goal was to provide protection from flooding along the Rivière des Outaouais and its tributaries, particularly in the Montréal region, while maintaining the interests of the various users, particularly with regard to hydroelectric energy production.

The Board is composed of seven members, each with an alternate, representing Canada (3), Ontario (2) and Québec (2). The authority of the Board is defined in the *Agreement Respecting Ottawa River Regulation*. To learn more about the Ottawa River Regulation Planning Board, go to <u>http://ottawariver.ca</u>.

Dams

The *Répertoire des barrages du Québec* (inventory of Québec dams) (CEHQ, 2014b) lists 1093 dams in the Rivière des Outaouais watershed. Table 3 shows the number of dams in each category defined in the *Dam Safety Act* (CQLR chapter S-3.1.01): small dams, low-capacity dams, high-capacity dams and ancillary dams. Ancillary dams are those that are on the same reservoir as another that is a main dam. For more information, see http://www.cehq.gouv.qc.ca/barrages/guides/guide_fiche_technique.pdf (French).

Dam Types	Number
Small dam	207
Low capacity	466
Low capacity (ancillary)	2
High capacity	398
High capacity (ancillary)	20
Total	1093

Table 3. Number and types of dams in the Rivière des Outaouais watershed (CEHQ, 2014a)

The dams of the Rivière des Outaouais watershed serve a variety of purposes. As is evident from Table 4, most primarily serve recreational needs, followed by hydroelectric production and flow regulation.

Table 4. Categories of dam uses in the Rivière des Outaouais watershed (CEHQ, 2014b)

Use Category	Number
Recreation	577
Hydroelectric production	125
Regulation	106
Wildlife	61
Other or unknown	61
Log rafting (formerly)	52
Water catchment	45
Flood protection	33
Fish farming	12
Fire fighting	10
Agriculture	8
Historical site	2
Total	1093

3.2 Qualitative profile

3.2.1 Water quality

Data collected over the 2011-2013 sampling period showed good overall quality in the main course of Rivière des Outaouais, in terms of conventional physicochemical parameters. The data was collected in five stations along the main course of the river and nine tributaries on the Québec side. From upstream down, the sampling stations in Rivière des Outaouais are at Notre-Dame-du-Nord, **Témiscaming**, Portage-du-Fort, the Masson ferry crossing and Carillon. The main tributaries monitored, again from upstream down, are the À la Loutre, Coulonge, Gatineau, Blanche (Templeton), Du Lièvre, Blanche (Thurso), De la Petite Nation, Saumon and Rouge rivers (Figure 5). The stations named in bold entered service in the summer or fall of 2012, so the data from them primarily reflects the physicochemical conditions of 2012-2013 (MDDELCC, 2014b).

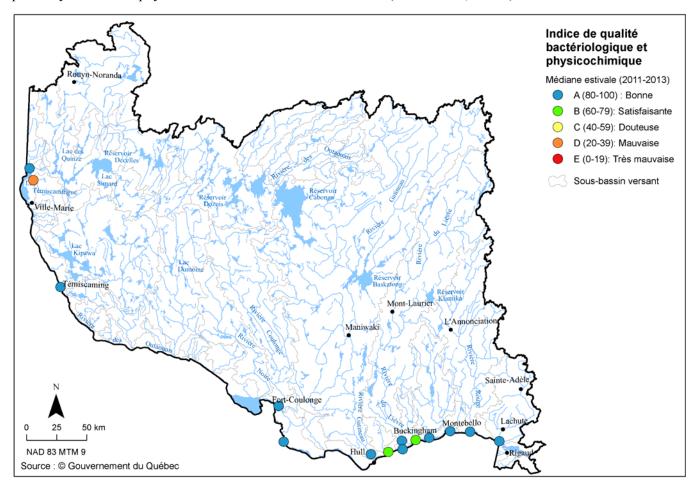


Figure 5. Bacteriological and physicochemical quality indices (BPQI₆) at water quality sampling stations in the Rivière des Outaouais watershed (MDDELCC, 2014b).

Analysis of the data shows that water quality was good in six of the nine tributaries of Rivière des Outaouais. The exceptions were the two Blanche rivers (at Templeton and Thurso respectively), where quality was satisfactory, while quality was poor in Rivière à la Loutre, primarily due to concentrations of suspended matter.

In the watershed as a whole the bacteriological quality was generally good. There were no violations of the quality criterion for indirect contact activities (1000 UFC/100 ml). Violations of the quality criterion for direct

contact activities (200 UFC/100 ml) were only observed in five stations over the summer period (May to October), and generally in fewer than 20% of the samples taken (MDDELCC, 2014b).

The generally good quality of water in Rivière des Outaouais and its tributaries is a reflection of the considerable efforts devoted to improving urban sanitation (sewage treatment) over the last 35 years. In the tributary watersheds there is limited pollution pressure from diffuse sources of agricultural pollution, so residual pollution in these watercourses is relatively low, as shown by their low concentrations of nutrient elements.

It is important to note that a good deal of the improvement in the quality of the water in Rivière des Outaouais is thanks to efforts on the Ontario side.

3.2.2 Cyanobacteria

In September 2007 the Government of Québec announced its *Plan d'intervention sur les algues bleu-vert* (intervention plan on blue-green algae). The intervention plan is a response to public concerns about outbreaks of blue-green algae (cyanobacteria) affecting a number of Québec water bodies. Since 2008, the MDDELCC has defined a bloom of blue-green algae as a concentration of at least 20 000 cells/ml of water. Data from before 2008 has been updated in accordance with this threshold.

From 2004 to 2012, based on the new threshold, blue-green algae blooms occurred in 178 water bodies in 14 subwatersheds of the Outaouais (Figure 6; MDDEFP, 2014). The sub-watershed most affected is that of Rivière du Nord (44 water bodies), followed closely by Rivière Rouge (43), while 26 water bodies were affected in the subwatershed of Rivière Gatineau (Figure 7).

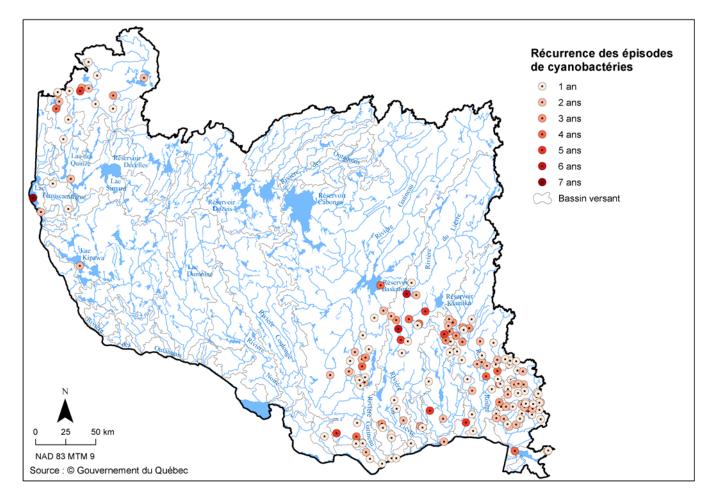


Figure 6. Recurrence of cyanobacteria outbreaks in water bodies of the Rivière des Outaouais watershed (MDDEFP, 2014).

Recurrence refers to consecutive years in which cyanobacteria are observed in a given water body. Over the period from 2004 to 2013, Lac Témiscamingue was affected every year from 2007 to 2013 (recurrence of seven years). The three lakes with the next highest recurrence (six years) are in the Laurentians, in the sub-watersheds of Rivière du Nord (Lac Johanne) and Rivière du Lièvre (Lac Ouellet and Lac des Îles) (MDDEFP, 2014).

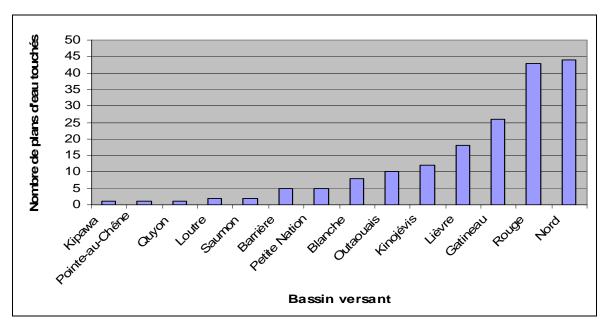


Figure 7. Number of water bodies affected by blue-green algae, by watershed (MDDEFP, 2014).

3.2.3 Lake acidity

Lake acidity may be of natural or human origin. Human caused acidification mostly occurred over the last 40 to 100 years, while lakes that are naturally acidic have been that way for millennia. Due to the geological nature of its soils, the Outaouais region is strongly affected by lake acidification. Out of 178 lakes tested, 14.5% were found to be acidic ($pH \le 5.5$), the percentage rising to 38.8% when transition lakes are included (pH 5.5-6), the level at which biological damage can occur (MDDELCC, 2000). Figure 8 illustrates the problem of acid lakes in the Outaouais rgion in comparison with the situation across Québec as a whole. The Laurentian region is somewhat less affected by acidification: there are only 9.4% acid lakes and 20.8% transition lakes, compared to 69.8% non-acid lakes out of the 96 tested.

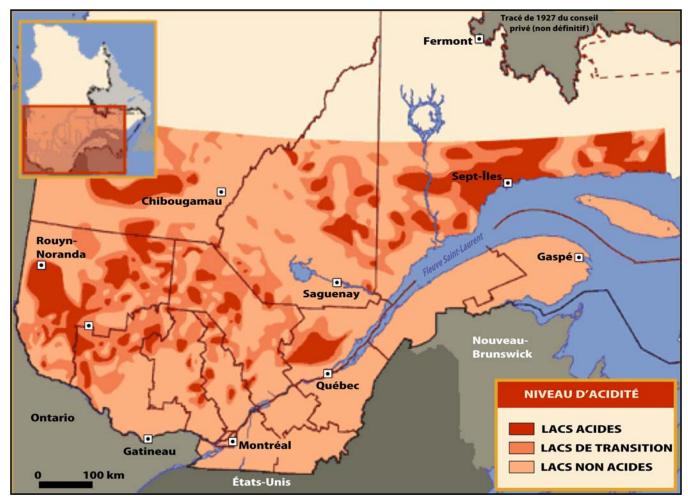


Figure 8. Levels of lake acidity in southern Québec (from Dupont, 2004).

To address the problem of lake acidification at source, Québec has joined with other industrialized states, including Canada and the United States, in launching extensive programs to reduce emissions of sulfur dioxide (SO_2) and nitrogen oxides (NO_x) at source. These programs have succeeded in lowering SO_2 emissions by 50% to 70%, and the intended effects have begun to appear. However, while water quality has improved in many acid lakes over the last decade, the problem persists in a great number of very sensitive lakes. In Québec, the recovery of acid lakes is held back by three main factors: acid deposition rates that continue to exceed the lakes' capacity to maintain sufficiently high pH; the greater sensitivity of forest soils; and the increasing impact of nitrate fertilizers (Dupont, 2004).

4 Groundwater

Under the *Programme d'acquisition de connaissances sur les eaux souterraines* (PACES – knowledge acquisition program on groundwater), the MDDELCC mandated Université Laval to conduct research on all municipalized territories in the Outaouais region (13 488 km²), in order to get an accurate portrait of the groundwater resource in these parts and to fill the lack of information on these groundwater resources. The ultimate goal is for the knowledge obtained to serve in the protection and sustainable use of groundwater resources.

The territory examined for the study had a total area of 13 762 km² and a population of over 341 000 (Comeau and collab., 2013). Total annual water consumption was estimated at 94.9 million cubic metres (mcm) per year, of which 19.4 mcm came from groundwater (about 20.4%). In the MRC of Papineau and the city of Gatineau, most water is drawn from the surface supply, while in the other MRCs groundwater meets about 80% of needs. Over the territory as a whole, groundwater is primarily used for residential purposes (71%), coming from individual wells (63%) and municipal water systems (8%).

The findings and recommendations of PACES Outaouais provide a solid basis for reflection on the issues of the Rivière des Outaouais watershed, particularly the lower section where the population is concentrated. The project also produced a number of maps that display, among other things, the region's geological formations, the principal aquifers, their recharge zones and zones of high vulnerability to contamination. The maps also provide information about the quality of groundwater supplies. For more information about the conclusions of PACES Outaouais, go to <u>http://rqes-gries.ca/fr/archives-et-documents/rapports-memoires-et-cartes/282-paces-outaouais.html</u> (French).

5 Biodiversity

5.1 Special-status species

The *Centre de données sur le patrimoine naturel du Québec* (CDPNQ – data centre on Québec's natural heritage) collects, analyses and publishes data on the elements constituting biodiversity, especially plant and wildlife species of particular value. The data reveals, for the Rivière des Outaouais watershed, that 55 wildlife species (CDPNQ, 2014a) and 213 plant species (CDPNQ, 2014b) have a status defined under the *Act respecting threatened or vulnerable species* (CQLR chapter E-12.01). To learn more about the biodiversity of the Rivière des Outaouais watershed, see Appendix I of this document and the *Atlas de la biodiversité du Québec: les espèces menacées ou vulnérables*, at http://www.cdpnq.gouv.qc.ca/pdf/Atlas-biodiversite.pdf (French)

5.2 Forest wetlands

Based on data from ecoforestry maps in the third ten-year inventory, Ducks Unlimited Canada has mapped (1/2 000) the wetlands of the Rivière des Outaouais watershed (Canards Illimités Canada, 2009; Figure 9). They cover a total area of approximatively 9164 km², or 8% of the entire watershed. As shown by Figure 10, most of the wetlands are ponds or pools (33%). However, 28% of the wetland area consists of herbaceous meadows (Figure 11). For more information on types of wetlands, see Appendix II.

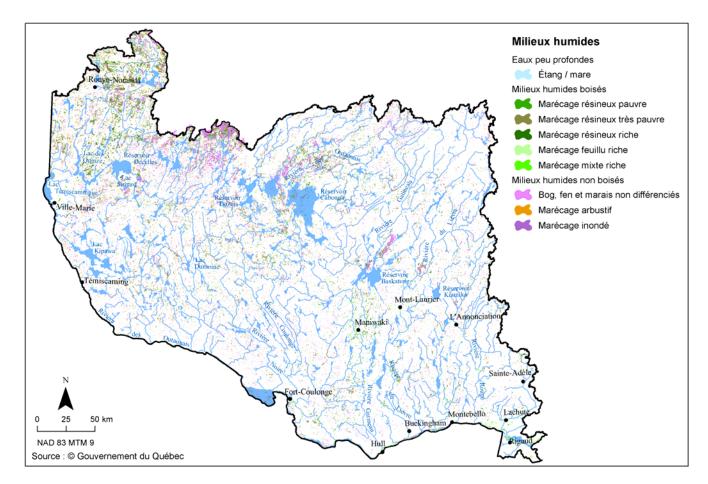


Figure 9. Wetlands in the Rivière des Outaouais watershed (Ducks Unlimited Canada, 2009)

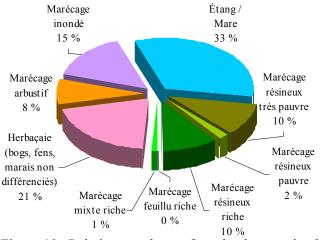


Figure 10. Relative numbers of wetland types in the Rivière des Outaouais watershed.

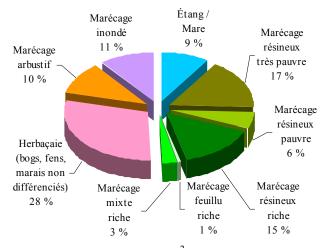


Figure 11. Relative area (km²) of wetland types in the Rivière des Outaouais watershed.

5.3 Designated protected areas

In December 2002, the Government of Québec adopted the *Natural Heritage Conservation Act* (CQLR c C-61.01) with the aim of contributing to the objective of safeguarding the character, diversity and integrity of Québec's natural heritage. Protected areas are designed primarily to ensure the conservation of species and their genetic diversity as well as the maintenance of the natural processes and ecosystems that are required for their survival. No activity carried out in all or part of the territory of a protected area may alter the essential biological character of that area.

Additionally, section 5 of the Act provides for the keeping of a register of the various protected areas. The register is available for public consultation on the MDDELCC's website, with information as to the purpose and characteristics of the different categories of protected areas (MDDELCC, 2014e).

The Rivière des Outaouais watershed contains, in whole or in part, a number of designated protected areas with various vocations. The total area they protect is approximately 7650 km² (Table 5),that is approximately 5% of the Rivière des Outaouais watershed. Dedicated to the conservation and enhancement of the natural heritage, they are primarily on lands in the public domain (Figure 12).

Protected Areas by Designation	Number	Area ¹ (km²)
Exceptional forest ecosystem	72	75.75
Habitat of a threatened or vulnerable plant species	4	1.91
Wildlife habitat		
Waterfowl gathering area	75	217.70
White-tailed deer yard	25	788.43
Island or peninsula inhabited by a colony of birds	15	0.03
Heronry ²	53	14.98
Muskrat habitat	55	30.35
National park of Canada (Parc de la Gatineau)	1	361.31
National parks of Québec Parc national de Plaisance Parc national d'Oka Parc national d'Aiguebelle (in part) Parc national du Mont-Tremblant (in part) Parc national d'Opémican	5	2082.70
Biological sanctuary	692	836.50
Migratory bird sanctuary (Île de Carillon)	1	4.65
Proposed aquatic reserve Vallée-de-la-Haute-Rouge Rivière-Dumoine	2	1587.03
Biodiversity reserve	18 (inc. 16 proposed)	2867.74
Ecological reserve	19 (inc. 1 proposed)	136.61
Recognized nature reserve	19	18.85

Table 5. Protected areas in the Rivière des Outaouais watershed (MDDELCC, 2014c)

¹ Total official size of protected area (may include a portion outside the Outaouais watershed).

² Protected area including buffer strips of 0 to 200 m.

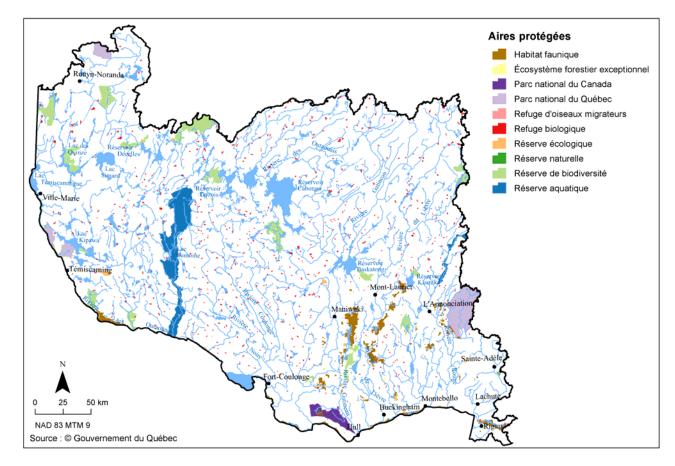


Figure 12. Protected areas listed in the Registre des aires protégées par désignation (MDDELCC, 2014c).

6 Uses of the watershed

6.1 Drinking water

6.1.1 Administrative region of Outaouais

The Outaouais region has eight municipalities that are supplied by surface water. Their population comes to around 277 500 people, or 72.8% of the total for the region. Most of their water is drawn directly from the main section of Rivière des Outaouais. Their drinking water treatment plants were modernized recently, with the help of various government support programs.

6.1.2 Administrative regions of Abitibi-Témiscamingue and Laurentides

Upstream, in the Abitibi-Témiscamingue region, and downstream in the Laurentides region, no treatment plants take their water from the main section of Rivière des Outaouais.

6.2 Municipal wastewater

6.2.1 Rivière des Outaouais watershed

Most municipalities in the watershed have a municipal sewer system. However, at present there are eight that discharge their untreated wastewater into 12 outfall structures (MDDELCC, 2014a). The outfalls are in Abitibi-Témiscamingue (8), Laurentides (1) and Mauricie (3). The sub-watersheds affected by the discharges are those of the Kipawa, À la Loutre, Des Outaouais, Gatineau, Fraser, Blanche and Kinojévis rivers, along with Ruisseau Bryson.

6.2.2 Administrative region of Outaouais

Due to its character as a metropolitan region and its proximity to Canada's capital, the city of Gatineau contains over two thirds of the population of the Outaouais region. Most of the industries present, including the agri-food sector, are served by the city's wastewater collection system.

Gatineau operates a wastewater treatment plant constructed in 1982 that has been upgraded over the years. The plant's purification performance is very good, with a score of 100% in 2013 for discharge requirements, noted in the annual performance evaluation report from the Ministère des Affaires municipales et de l'Occupation du territoire (MAMOT, 2014).

The report also notes another reality, however: the presence of 92 overflow structures upstream of the wastewater treatment plant. These structures are found in older parts of the city, on combined sewers, which collect not only domestic sewage but also rainwater and snowmelt.

The discharging of untreated wastewater from overflow structures directly into the river (by both Gatineau and Ottawa), and the discharging of non-disinfected wastewater by Gatineau, are the main issues in the water quality protection plan for Rivière des Outaouais. Note however that authorization has been given for the installation of ultraviolet disinfection equipment in Gatineau's treatment facility. It is expected to enter operation by December 2015.

6.3 Industrial wastewater

6.3.1 Administrative region of Outaouais

Forest harvesting and the associated processing industries, which are important components of the region's industrial infrastructure, are independent when it comes to wastewater treatment. Of all industries in the administrative region, pulp and paper mills use the most water and generate the most effluent.

The four such mills in the region are subject to effluent standards set out in the *Regulation respecting pulp and paper mills* (CQLR chapter Q-2, r. 12.1). Thus, their wastewater is only discharged into the environment after treatment.

Additionally, pursuant to division IV.2 (Depollution Attestation) of the *Environment Quality Act* (CQLR chapter Q-2) and the *Regulation respecting industrial depollution attestations* (CQLR chapter Q-2, r. 1.01), there is an economic motivation for such companies to reduce the amount of pollution they release, thanks to the duties charged under the Regulation

6.4 Water withdrawals

With the adoption of the *Act to Affirm the Collective Nature of Water Resources and Provide for Increased Water Resource Protection* (CQLR chapter C-6.2), known as the Water Act, a new authorization regime was established for water withdrawals. The regime recognizes that priority must be given to the needs of the population, followed by balancing the needs of ecosystems and economic activities. Under the Act, water withdrawal authorizations are valid for a period of 10 years, with certain exceptions.

The *Water Withdrawal and Protection Regulation* (WWPR) (CQLR chapter Q-2, r. 35.2) was adopted on July 16, 2014. It completed the coming into force of the Water Act by implementing the new authorization regime that the Act had introduced into the *Environment Quality Act* (CQLR chapter Q-2). With the provisions in its chapters V and VI, the Regulation strengthens the protection of drinking water supply sources (MDDELCC, 2014g).

Of all industrial sectors in the Rivière des Outaouais watershed as a whole, the mining industry figures amongst the ones who withdraw the most water.

6.5 Hydroelectricity

The Rivière des Outaouais watershed has around 43 hydroelectric plants with a generating capacity of over 3500 megawatts. For comparison, the Robert-Bourassa generating station has an installed capacity of 5616 megawatts, and can supply 1.4 million people (Hydro-Québec, 2010). The industry is thus a significant contributor to the economy of Québec and Ontario (Ottawa River Regulation Planning Board, 1984).

6.6 Industry

6.6.1 Primary sector

In the primary sector, mineral extraction is represented by numerous quarries and sandpits (325 according to data from the MDDELCC, of which 25 are significant according to the Ministère de l'Énergie et des Ressources naturelles – MERN). Generally speaking, quarry and sandpit operations have little impact on groundwater, except the lowering of the phreatic level when the extraction occurs below this level. Wastewater produced in the operation of a quarry or sandpit or by a crushing or screening process must respect the standards for contaminant concentrations specified in the *Regulation respecting pits and quarries* (CQLR chapter Q-2, r. 7).

It should be noted that fairly close to Rivière des Outaouais, there is an abandoned mine that generates acid mine drainage. This is the 16-hectare site of the former New Calumet lead and zinc mine. In 2013 the MERN performed a site characterization, and it is currently working on a remediation plan (MERN, 2014).

The primary sector also includes forestry operations, including logging and the floating of timber down rivers. Although timber floating has been abandoned, it degraded the banks and beds of many rivers, many of which have not been properly cleaned. As well, certain forestry companies have abandoned logging camps, piers and docks without restoring the banks they degraded.

6.6.2 Secondary sector

Since the 1970s, various steps have been taken by the Government toward cleaning up industrial wastewater. These include: the requirement for authorization before setting up any industrial establishment; the adoption of regulations governing the pulp and paper and oil refining sectors; and the creation of specific intervention programs, notably the *Programme d'assainissement des eaux du Québec* (PAEQ – wastewater purification program), the *Plan d'action Saint-Laurent* (PASL – St. Lawrence action plan) and the *Programme de réduction des rejets industriels* (PRRI – industrial emissions reduction program). For any establishment that discharges effluent directly into the environment, the MDDELCC determines the level of treatment required (based on the

quality criteria for surface water), and sets environmental discharge objectives accordingly, with consideration given to the technology available and economically acceptable. As for the municipal level, by-laws governing the discharge of industrial effluent into sewer systems have paralleled the construction of treatment plants.

6.6.3 Pulp and paper sector

As mentioned earlier, of all the industries in the Outaouais administrative region, pulp and paper mills use the most water and generate the most effluent. Each mill discharges 0.3 to 54 million cubic metres of water per year (2012 report, publication forthcoming). There are also two landfill sites containing waste from the mills; they discharge respectively 75 000 and 971 000 m³/year of leachate into the environment. Table 6 below presents the five pulp and paper mills in the region², indicating the location of their intake and discharge points, the average discharge flow and the type of treatment applied to their wastewater. These companies are subject to industry standards for effluents under the *Regulation respecting pulp and paper mills* (CQLR, chapter Q-2, r. 27). Their process waters are only released into the environment after treatment, considerably reducing the impact on the receiving environment. For more information, including the companies' emissions and environmental compliance performance, see the annual environmental compliance reports on the pulp and paper sector at http://www.mddelcc.gouv.gc.ca/milieu_ind/bilans/pates.htm (French).

Further, pursuant to division IV.2 (Depollution Attestation) of the *Environment Quality Act* (CQLR, chapter Q-2) and the *Regulation respecting industrial depollution attestations* (CQLR, chapter Q-2, r. 5), such companies must prepare and implement gradually depollution plans to comply with supplementary standards based on the receiving environment. Besides, it is to their economic advantage to reduce the amount of pollution they release, thanks to the duties charged under the Regulation. Determined on the basis of the weight of contaminants emitted, not the volumes of water withdrawn or discharged, the duties are payable each year after the first depollution attestation is delivered.

Further still, since the coming into force of the *Regulation respecting the charges payable for the use of water* (CQLR chapter Q-2, r. 42.1), all industries that withdraw or use 75 m³ or more of water per day, whether directly from the resource or from a water distribution system, must pay a charge per cubic metre of water used (MDDELCC, 2014f).

² Though located in the municipality of Témiscamingue, Tembec's pulp and paper mill is included in the table because it withdraws and discharges its water upstream from Rivière des Outaouais.

Table 6. Characteristics of the five pulp and paper mills in the Outaouais region (2012 report, publication forthcoming)

Industrial establishment MUNICIPALITY	Intake point	Discharge point	Final effluent (discharge) Flow in m³/yr (2012)	Treatment of process wastewater
Resolute Forest Products Inc., Gatineau Division GATINEAU	Rivière des Outaouais	Rivière des Outaouais	0 (operation suspended since 2010)	Settling and biological treatment (activated sludge)
Fortress Specialty Cellulose Inc. THURSO	Rivière des Outaouais	Rivière des Outaouais	27 513 178	Settling and biological treatment (activated sludge)
Whitebirch (Papier Masson Ltée) GATINEAU	Rivière du Lièvre	Rivière du Lièvre	8 248 215	Settling and biological treatment (activated sludge)
Kruger Products L.P. GATINEAU	Rivière des Outaouais	Rivière des Outaouais	5 586 016	Settling
Tembec, pulp and paper mill TÉMISCAMING	Rivière des Outaouais	Rivière des Outaouais and Ruisseau Gordon	53 575 132 and 8 248 215	Settling and biological treatment (activated sludge)

6.6.4 Lumber and wood products sector

Another important industrial sector in the Outaouais region is that of harvesting and processing wood. In 2009, according to data from the MERN, some twenty large companies discharged 2000 to 900 000 m³ of water into the environment.

6.6.5 Mines

In 2012 there were 16 mining projects in the Rivière des Outaouais watershed, most being in the Abitibi-Témiscamingue region (11), along with four in Laurentides and one in Outaouais (Table 7; MERN, 2012). Their location and status are presented in Figure 13. A "development" status means that a project has reached the stage during which mining facilities are built and production begins, while a "Pre-development" status means that a project is at the stage during which extensive, detailed studies are carried out.

Mine Name	Status	Proponent	Minerals	
Francœur	Development	Richmont Mines Inc.	Gold, silver	
Westwood	Development	IAMGOLD Corporation	Gold	
Mouska	Active mine	IAMGOLD Corporation	Gold, silver, copper	
LaRonde	Active mine	Agnico Eagle Mines Ltd.	Gold, silver, copper, lead, zinc	
Othmer	Active mine	Dentsply Canada Ltd.	Feldspar	
Lac des Îles	Active mine	TIMCAL Graphite & Carbon	Graphite	
Saint-Canut	Active mine	Unimin Canada Ltd.	Silica	
Saint-Rémi-d'Amherst	Active mine	Société Minière Gerdin Inc.	Silica, kaolinite	
Belleterre	Pre-development	Ressources Conway Inc.	Gold	
Joanna	Pre-development	Aurizon Mines Ltd.	Gold, silver	
Lac Pelletier	Pre-development	Corporation Minière Alexis	Gold	
Wasamac	Pre-development	Richmont Mines Inc.	Gold	
Dumont Nickel	Pre-development	Royal Nickel Corporation	Nickel	
Zeus	Pre-development	Matamec Explorations Inc.	Rare earths, yttrium, zircon	
Authier	Pre-development	Glen Eagle Resources Inc.	Lithium ores	
Niocan	Pre-development	Niocan Inc.	Niobium	

Table 7. Characteristics of mining projects in the Rivière des Outaouais watershed in 2012 (MERN, 2012)

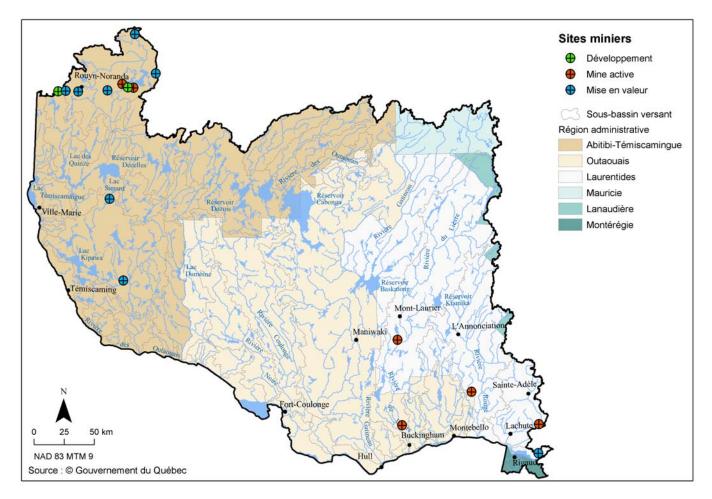


Figure 13. Location and status of mining sites in the Rivière des Outaouais watershed (MERN, 2012).

6.7 Agriculture

Québec's *Agricultural Operations Regulation* (CQLR chapter Q-2, r. 26) is the main regulation aimed at protecting the environment, particularly water and soil, against pollution caused by certain agricultural activities. To resolve the problem of diffuse pollution from manure, fertilizer etc., the Act emphasizes the importance of a proper phosphorus balance in soil (MDDELCC, 2014h). This approach takes into account the nutrient needs of plants for healthy growth, and requires farmers to calculate the actual quantities of manure produced on the farm.

Agriculture practised in the watershed is concentrated in the relatively narrow valleys of rivers and in the area around Lac Témiscamingue. In 2013 there were nearly 2700 farms, for a total cultivated area of 2900 km². The area under cultivation thus amounts to less than 3% of the Québec part of the Rivière des Outaouais watershed (MDDELCC, 2014k).

Most of the watershed's farmland consists of meadows and pastures. In the southern part, in the administrative regions of Outaouais and Laurentides, around 15% of the farmland is in field crops (corn, soy, grains), which account for just 5% of the farmland around Lac Témiscamingue (Abitibi-Témiscamingue region) (MDDELCC, 2014k).

Nearly 10% of the watershed's farmland is in the sub-watershed of Rivière du Nord, near Lac des Deux Montagnes. Phosphorus concentrations at the mouth of that river exceed the water quality criterion of 0.03 mg/l, whose purpose is to avoid excessive growth by algae and aquatic plants. To limit environmental pressure due to agriculture, since 2005 it has been prohibited to increase the area under cultivation in the municipalities concerned.

In the Rivière des Outaouais watershed, 42% of the nutrient load in manure could potentially be stored directly on the ground. This method of storage (piling manure in the field) creates a risk that part of the contaminants (nitrates, bacteria, etc.) will enter groundwater aquifers by percolating through the soil, or that heavy rain or snowmelt will transport ammoniacal nitrogen, nitrates, phosphorus, bacteria, suspended matter, etc. into surface waters (MDDELCC, 2014j).

Direct access to watercourses by cattle contributes to surface water contamination and causes erosion. However, under the *Agricultural Operations Regulation* unrestricted access to watercourses by livestock has been prohibited since 2005. In 2014 fewer than 2% of raising sites in the Outaouais, Abitibi-Témiscamingue and Laurentides regions had livestock that could potentially have such access.

6.8 Recreational and vacation activities

Vacation activities are of considerable importance in the Rivière des Outaouais watershed, largely due to the proximity of the Gatineau-Ottawa population pool. Densely inhabited shores around water bodies contribute heavily to the deterioration of water quality and the eutrophication of lakes.

As mentioned earlier, forest covers 73% of the watershed. It is reasonable to suppose that proximity to this forest encourages the development of recreational activities. There are 83 areas devoted to recreation in the watershed, covering a total of more than 41 000 km² (MRNF, 2012). Figure 14 displays their geographical location.

Recreational Territory	Number	Area (km²)
Community wildlife area (Réservoir Baskatong)	1	332.92
Regional park (Parc régional du Poisson Blanc)	1	41.75
Outfitter with exclusive rights	61	7577.58
Wildlife reserve	3	14 756.02
La Vérendrye		
Rouge-Matawin (in part)		
Papineau-Labelle		
Controlled zone (ZEC)	17	18 505.76

Table 8. Recreational territories in the Rivière des Outaouais watershed (MRNF, 2012)

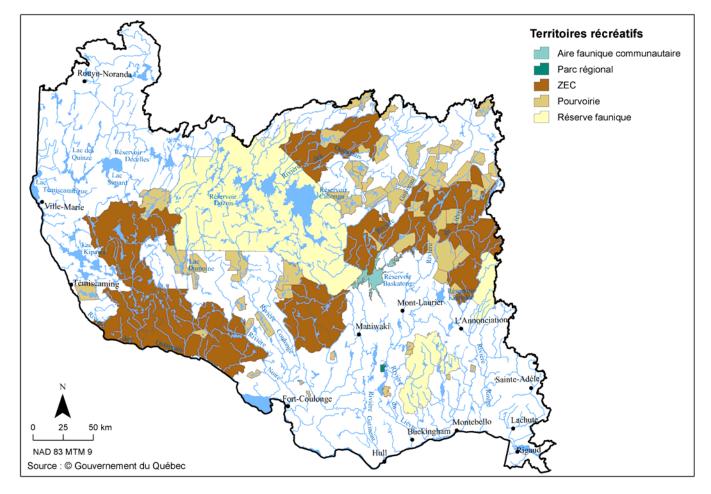


Figure 14. Recreational territories in the Rivière des Outaouais watershed (MRNF, 2012).

6.9 Wildlife harvesting activities

Several administrative regions in the Rivière des Outaouais watershed are known for their fishing, hunting and trapping activities, since they have an abundant and varied wildlife resource. On this count, there are 8 hunting zones, 9 fishing zones and 30 furbearer management units. The popularity of these activities has led to the creation of structured territories including outfitters, controlled zones (ZECs) and wildlife reserves. Note that although forestry companies must comply with the *Regulation respecting standards of forest management for forests in the domain of the State* (CQLR chapter A-18.1, r. 7), their operations can still have an impact on aquatic ecosystems, and thus on wildlife harvesting activities, depending on the size of logging areas and their distribution in the watershed (MFFP, 2014).

Figures 15, 16 and 17 demonstrate the importance of the economic benefits of wildlife harvesting activities in the regions of the Rivière des Outaouais watershed (Outaouais, Laurentides, Abitibi-Témiscamingue).

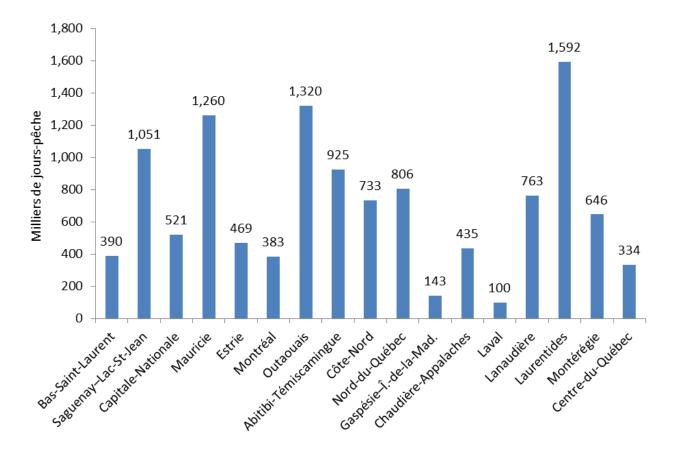


Figure 15. Number of fishing days per administrative region in 2012 (from ÉcoRessource, 2014).

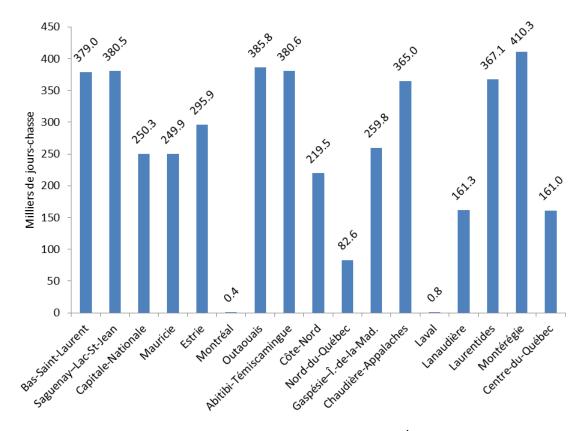


Figure 16. Number of hunting days per administrative region in 2012 (from ÉcoRessource, 2014).

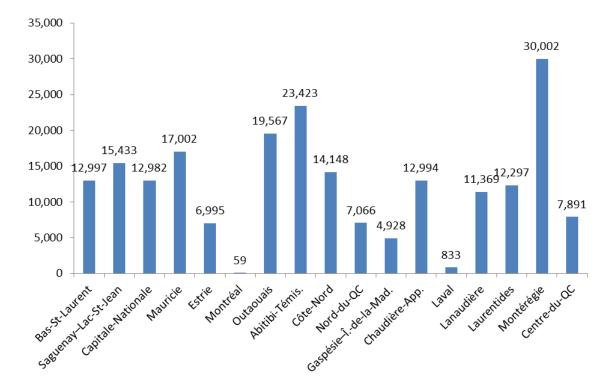


Figure 17. Number of captures per administrative region in 2012 (from ÉcoRessource, 2014).

7 Government measures

The Government of Québec recognizes that the goal of achieving integrated water management across Québec presents major challenges. Some of the issues identified in this brief profile will soon be governed by new regulations, or are already. The following are two recent examples of government measures that should contribute significantly to the protection of water resources.

7.1 Measures to reduce the discharge of untreated wastewater

Wastewater of municipal origin can be a major source of pollution in rivers, lakes and the St. Lawrence River. This is true for multiple reasons: sewer systems that overflow when there is heavy rain or rapid snowmelt; treatment plants that are not equipped with disinfection equipment; the complete absence of sewage treatment plants in many small municipalities; and so on.

In accordance with the *Canada-wide Strategy for the Management of Municipal Wastewater Effluent*, developed by the Canadian Council of Ministers of the Environment, Québec's *Regulation respecting municipal wastewater treatment works* (RMWTW; CQLR chapter Q-2, r. 34.1) sets out rules on discharges and the frequency of overflows from sewer overflow structures. It also provides a framework for the delivery of depollution attestations to establish site-specific discharge and overflow requirements based on the sensitivity of the receiving environment (MDDELCC, 2014i).

Implementation of the RMWTW, which came into force on January 11, 2014, is expected to reduce wastewater overflows and improve the quality of municipal effluents. The Regulation introduces new administrative and technical obligations for the operators of municipal wastewater treatment works. These include performing an initial effluent characterization, meeting general and specific discharge standards, producing overflow reduction plans, and carrying out the work set out in those plans. Existing treatment facilities that are unable to meet the discharge standards will have until 2030 or 2040 to achieve compliance, depending on the level of risk to the receiving environment. Municipalities with no treatment facility, or with only a screening system for raw sewage, will have until 2020 to comply with the standards in the Regulation.

7.2 Measures to protect water supply sources and drinking water quality

A variety of measures have been taken in recent years to protect water supply sources and drinking water quality. The *Regulation respecting the quality of drinking water* (CQLR chapter Q-2, r. 40) has been strengthened by several amendments, and the *Water Withdrawal and Protection Regulation* (WWPR; CQLR chapter Q-2, r. 6)

was adopted on July 16, 2014. The latter requires the officials responsible for municipal withdrawals to produce, and update every five years, a report on the vulnerability of their water source.

8 Governance

8.1 Intergovernmental

There is a multi-sectoral framework for cooperation with Ontario. Exchanges are conducted under the *Ontario-Québec Trade and Cooperation Agreement*, signed in September 2009 and updated in August 2011. Annex 2.5 of the agreement lists areas in which the two governments wish to establish specific cooperation agreements. Environmental cooperation is one of them. The *Agreement Concerning Transboundary Environmental Impacts*, signed on June 2, 2006, is just one of 19 specific agreements. The objective is to work together on transboundary environmental issues by giving priority to the promotion of information exchange and joint cooperation mechanisms. The themes covered are fairly broad, addressing air quality, surface water management, pollution reduction in watercourses, and so on. As a result of Annex 2.5 of the Agreement and the specific agreement, a variety of working groups are in place. In the area of water management specifically, there are currently two joint working groups:

- Transboundary water: cyanobacteria in lakes Abitibi and Témiscamingue;
- Transboundary water: Rivière des Outaouais.

Beyond their bilateral cooperation, Québec and Ontario also collaborate under the *Great Lakes–St. Lawrence River Basin Sustainable Water Resources Agreement* (see Figure 18). Pursuant to this agreement, the premiers of the two provinces and the governors of the eight states adjoining the Great Lakes, or their representatives, form the Great Lakes-St. Lawrence River Water Resources Regional Body, whose mandate is to ensure the coherent application and monitoring of the agreement. The application of this agreement is crucial for Québec. Since the St. Lawrence River is downstream from the Great Lakes, it is sensitive to variations in water level and to the cumulative impacts of withdrawals upstream. Water levels have significant effects on vessel traffic in the shipping channel, on public water supplies and on the viability of aquatic habitats. It should be noted that the *Act to Affirm the Collective Nature of Water Resources and Provide for Increased Water Resource Protection* (CQLR chapter C-6.2), adopted on June 11, 2009, includes provisions enabling implementation of the agreement on Québec territory, notably with regard to three issues: the prohibition against diversions outside the Great Lakes-St. Lawrence River Basin above Trois-Rivières; the management criteria for water withdrawals within the basin; and the publishing of information about withdrawals.

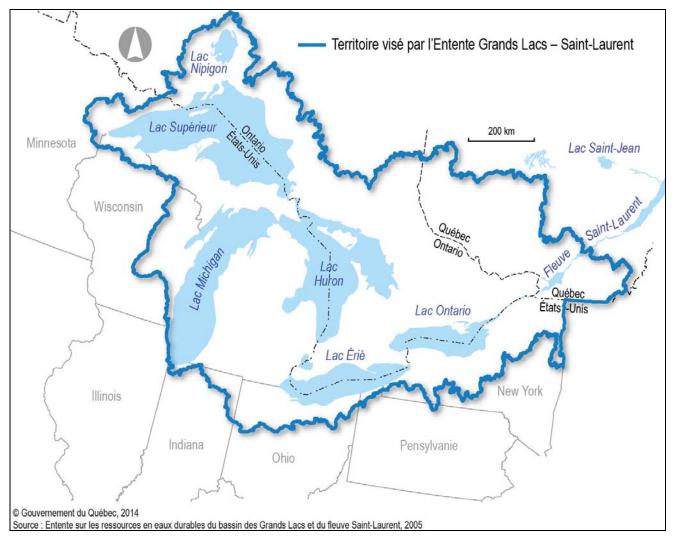


Figure 18. Territory concerned by the *Great Lakes–St. Lawrence River Basin Sustainable Water Resources Agreement* (from MDDELCC, 2014d).

8.2 Regional

At the regional level, the Rivière des Outaouais watershed is subdivided into eight integrated water management zones (Figure 19). Within these zones, collaborative efforts are led by watershed councils that are officially recognized by the Government of Québec. Their mission is to promote the mobilization, collaboration and active participation of citizens and water stakeholders, while ensuring the balanced representation of different interests. To do so, watershed councils draw up a water master plan whose implementation they will subsequently promote, coordinate and monitor. Water master plans provide a detailed vision of issues at the regional level, and facilitate the setting of priorities (in consultation with stakeholders) on actions to undertake. As of April 1, 2014 all of the region's watershed councils had submitted their master plan to the MDDELCC. In the coming months, after

analysis by the various departments involved in the integrated management of water resources, the plans should receive the Minister's approval.

The watershed councils on the territory of the Rivière des Outaouais watershed are as follows:

- Agence de bassin versant des 7 (ABV des 7) <u>abv7.org/;</u>
- Comité du bassin versant de la rivière du Lièvre (COBALI) www.cobali.org/;
- Organisme de bassin versant Abitibi-Jamésie (OBVAJ) <u>obvaj.org/</u> (French);
- Organisme de bassin versant de la Rivière du Nord (ABRINORD) <u>www.abrinord.qc.ca/</u> (French);
- Organisme de bassins versants des rivières Rouge, Petite Nation et Saumon (OBVRPNS) <u>www.rpns.ca/</u> (French);
- Organisme de bassin versant du Témiscamingue (OBVT) <u>www.obvt.ca/;</u>
- Conseil du bassin versant de la région de Vaudreuil-Soulanges (COBAVER-VS) <u>www.cobaver-vs.org/</u> (French);
- Conseil des bassins versants des Mille-Îles (COBAMIL) <u>www.cobamil.ca/</u> (French).

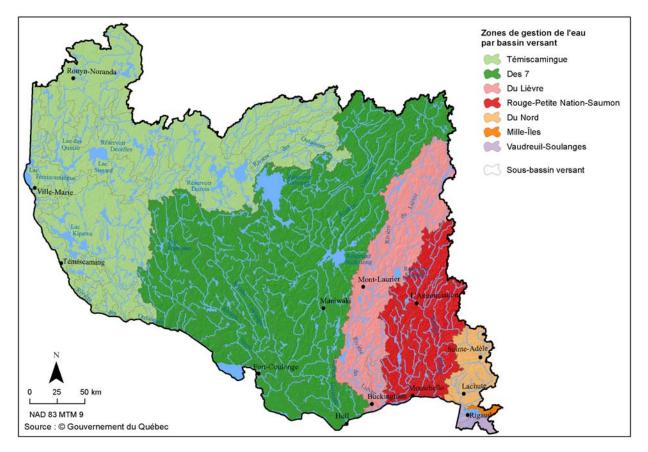


Figure 19. Water management zones in the Rivière des Outaouais watershed.

On the Ontario side, there are 36 Conservation Authorities (Conservation Ontario, 2013), all of which are members of Ontario Conservation. Governed by Ontario's *Conservation Authorities Act* (1946), they play a role similar to that of Québec's watershed councils. The conservation authorities are non-profit organizations, each with its own board of directors whose members are designated by local municipalities, most being elected municipal officials. Their mandate is to oversee at the watershed level the conservation, restoration and responsible management of aquatic habitats, lands and natural resources of Ontario, while balancing environmental, economic and human needs.

These initiatives are complemented on both sides of the border by those of other, non-governmental bodies, including:

- Ottawa Riverkeeper / Sentinelle Outaouais <u>http://ottawariverkeeper.ca/;</u>
- Fondation de Gaspé Beaubien <u>www.fondationdegaspebeaubien.org/</u>.

9 Bibliography

CANARDS ILLIMITÉS CANADA (2009). Classification des milieux humides et modélisation de la sauvagine dans le Québec forestier, Québec, Canards illimités Canada.

CDPNQ (2014a). Extraction du système de données pour le territoire du bassin versant de l'Outaouais, Centre de données sur le patrimoine naturel du Québec (CDPNQ), Québec, Ministère des Forêts, de la Faune et des Parcs.

CDPNQ (2014b). Extraction du système de données pour le territoire du bassin versant de l'Outaouais, Centre de données sur le patrimoine naturel du Québec (CDPNQ), Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques.

CEHQ (2014a). Guide d'interprétation de la fiche technique d'un barrage, Québec, Centre d'expertise hydrique du Québec (CEHQ), Direction de la sécurité des barrages, 20 p. Available at: <u>http://www.cehq.gouv.qc.ca/barrages/guides/guide_fiche_technique.pdf</u>.

CEHQ (2014b). Répertoire des barrages, [Online], updated December 10, 2014. Centre d'expertise hydrique du Québec (CEHQ), Direction de la sécurité des barrages, [http://www.cehq.gouv.qc.ca/barrages/default.asp] (Accessed December 17, 2014).

COMEAU, G., and collab. (2013). Projet d'acquisition de connaissances sur les eaux souterraines en Outaouais : rapport final, Université Laval, Département de géologie et de génie géologique, July, 148 pp., 24 app., 25 maps.

OTTAWA RIVER REGULATION PLANNING BOARD (1984). Information brochure, [Online], May. [http://ottawariver.ca/information-brochure.php] (Accessed March 1, 2015).

CONSERVATION ONTARIO (2013). Conservation Authorities of Ontario Mandate, [Online]. [http://www.conservation-ontario.on.ca/about-us/conservation-authorities] (Accessed December 17, 2014).

DUPONT, J. (2004). La problématique des lacs acides au Québec, Québec, Ministère de l'Environnement, Direction du suivi de l'état de l'environnement, 18 p. [Envirodoq no ENV/2004/0151, collection no QE/145]. Available at: <u>http://www.mddelcc.gouv.qc.ca/Eau/eco_aqua/lacs_acides/2004/lacs-acides-Qc.pdf</u>.

ÉCORESSOURCES (2014). L'industrie faunique comme moteur économique régional : une étude ventilant par espèce et par région les retombées économiques engendrées par les chasseurs, les pêcheurs et les piégeurs québécois en 2012, 42 p. + app. [Report prepared for the Ministère des Forêts, de la Faune et des Parcs].

HYDRO-QUÉBEC (2010). Electricity from the power station to the home, Hydro-Québec, 52 pp. Available at: <u>http://www.hydroquebec.com/teachers/pdf/doc-electricity-from-the-power-station-to-the-home.pdf</u>.

ISQ (2014). Profils statistiques par région et MRC géographiques, [Online]. Institut de la statistique du Québec (ISQ). [http://www.stat.gouv.qc.ca/statistiques/profils/region_00/region_00.htm] (Accessed December 17, 2014).

Ouvrage de surverses et station d'épuration : Évaluation de performance des ouvrages MAMOT (2014). municipaux d'assainissement des eaux pour l'année 2013, Québec, Ministère des affaires municipales et de l'Occupation du territoire (MAMOT), 44 p. +app. Available at : http://www.mamrot.gouv.qc.ca/pub/infrastructures/suivi ouvrages assainissement eaux/eval perform rapport 2 013.pdf.MDDEFP (2011). Cadre de référence hydrologique du Québec (CRHQ) [digital raster data]. MDDEFP-DPEP, 1/20 000, Québec, Ministère du Développement durable, de l'Environnement, de la Faune et des Parcs (MDDEFP), Direction du patrimoine écologique et des parcs (DPEP).

MDDEFP (2014). Plans d'eau touchés par des fleurs d'eau d'algues bleu-vert : récurrence au cours de la période 2004-2013 [digital raster data], Québec, Ministère du Développement durable, de l'Environnement, de la Faune et des Parcs (MDDEFP), Direction du suivi de l'état de l'environnement et Centre d'expertise en analyse environnementale du Québec.

MDDELCC (2000). Portrait régional de l'eau, Outaouais (région administrative 07), Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC). Available at: <u>http://www.mddelcc.gouv.qc.ca/eau/regions/region07/index.htm</u>.

MDDELCC (2014a). Banque de données sur la localisation des émissaires municipaux (LEM) compilée à partir de la banque de suivi des ouvrages municipaux d'assainissement des eaux (SOMAE) du ministère des Affaires municipales et de l'Occupation du territoire, Québec, Ministère des Affaires municipales et de l'Occupation du territoire et Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC), Direction du suivi de l'état de l'environnement.

MDDELCC (2014b). Banque de données sur la qualité du milieu aquatique (BQMA), Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC), Direction du suivi de l'état de l'environnement.

MDDELCC (2014c). Base de données du registre des aires protégées au Québec [digital raster data], Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC).

MDDELCC (2014d). Rapport sur l'état de l'eau et des écosystèmes aquatiques au Québec, Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC). Available at: <u>http://www.mddelcc.gouv.qc.ca/rapportsurleau/index.htm</u>.

MDDELCC (2014e). Registre des aires protégées, Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC). Available at: http://www.mddelcc.gouv.qc.ca/biodiversite/aires_protegees/registre/index.htm.

MDDELCC (2014f). *Regulation respecting the charges payable for the use of water*, Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC). Available at: <u>https://www.canlii.org/en/qc/laws/regu/cqlr-c-q-2-r-42.1/latest/cqlr-c-q-2-r-42.1.html</u>.

MDDELCC (2014g). *Water Withdrawal and Protection Regulation*, Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC). Available at: https://www.canlii.org/en/qc/laws/regu/cqlr-c-q-2-r-35.2/latest/cqlr-c-q-2-r-35.2.html.

MDDELCC (2014h). Agricultural Operations Regulation, Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC). Available at: http://www.canlii.org/en/qc/laws/regu/cqlr-c-q-2-r-26/latest/cqlr-c-q-2-r-26.html.

MDDELCC (2014i). *Regulation respecting municipal wastewater treatment works*, Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC). Available at: <u>https://www.canlii.org/en/qc/laws/regu/cqlr-c-q-2-r-34.1/latest/cqlr-c-q-2-r-34.1.html</u>.

MDDELCC (2014j). Suivi de la pollution d'origine agricole, Système d'aide à la gestion des opérations, Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC).

MDDELCC (2014k). Land use, Québec [digital raster data], Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques (MDDELCC).

MERN (2012). Localisation des mines actives et des projets miniers de mise en valeur et de développement répertoriés par le ministère des Ressources naturelles en 2012, Système d'information géominière du Québec, Québec, Ministère de l'Énergie et des Ressources naturelles (MERN).

MERN (2014). Liste des sites miniers abandonnés, [Online]. Québec, Ministère de l'Énergie et des Ressources naturelles (MERN). [http://www.mern.gouv.qc.ca/mines/restauration/restauration-sites-miniers-abandonnes.jsp#outaouais]. (Accessed December 17, 2014).

MFFP (2014). Regulation respecting standards of forest management for forests in the domain of the State, Québec, Ministère des Forêts, de la Faune et des Parcs (MFFP). Available at: https://www.canlii.org/en/qc/laws/regu/cqlr-c-a-18.1-r-7/latest/cqlr-c-a-18.1-r-7.html.

MRNF (2012). Base de données sur les territoires récréatifs du Québec à l'échelle de 1:100 000 (TRQ) [digital raster data], Québec, Ministère des Ressources naturelles et de la Faune (MRNF), Direction de la cartographie générale et administrative.

OUTAOUAIS TOURISM (2014). "History", Outaouais. Outaouais near and dear, [Online]. Gatineau, Outaouais Tourism. [http://www.tourismeoutaouais.com/en-ca/_pages/outaouais.aspx?intOngletID=2]. (Accessed March 1, 2015).

Appendix I. Special-status species (threatened, vulnerable or likely to be so designated) in the Rivière des Outaouais watershed

Wildlife species

Common name	Latin name	Group	Class	Status
Alewife floater	Anodonta implicata	Invertebrates	Bivalvia	Likely
Elephant-ear	Elliptio crassidens	Invertebrates	Bivalvia	Likely
Spike	Elliptio dilatata	Invertebrates	Bivalvia	Likely
Fragile papershell	Leptodea fragilis	Invertebrates	Bivalvia	Likely
Hickorynut	Obovaria olivaria	Invertebrates	Bivalvia	Likely
Pink heelsplitter	Potamilus alatus	Invertebrates	Bivalvia	Likely
Pickerel frog	Lithobates palustris	Vertebrates	Amphibia	Likely
Four-toed salamander	Hemidactylium scutatum	Vertebrates	Amphibia	Likely
Striped chorus frog	Pseudacris triseriata	Vertebrates	Amphibia	Vulnerable
Cerulean warbler	Setophaga cerulea	Vertebrates	Aves	Threatened
Red-headed woodpecker	Melanerpes erythrocephalus	Vertebrates	Aves	Threatened
Loggerhead shrike	Lanius Iudovicianus	Vertebrates	Aves	Threatened
Yellow rail	Coturnicops noveboracensis	Vertebrates	Aves	Threatened
Caspian tern	Hydroprogne caspia	Vertebrates	Aves	Threatened
Grasshopper sparrow	Ammodramus savannarum	Vertebrates	Aves	Likely
Short-eared owl	Asio flammeus	Vertebrates	Aves	Likely
Chimney swift	Chaetura pelagica	Vertebrates	Aves	Likely
Golden-winged warbler	Vermivora chrysoptera	Vertebrates	Aves	Likely
Louisiana waterthrush	Parkesia motacilla	Vertebrates	Aves	Likely
Sedge wren	Cistothorus platensis	Vertebrates	Aves	Likely
American peregrine falcon	Falco peregrinus anatum	Vertebrates	Aves	Vulnerable
Bicknell's thrush	Catharus bicknelli	Vertebrates	Aves	Vulnerable
Least bittern	Ixobrychus exilis	Vertebrates	Aves	Vulnerable
Bald eagle	Haliaeetus leucocephalus	Vertebrates	Aves	Vulnerable
Wolverine	Gulo gulo	Vertebrates	Mammalia	Threatened
Least weasel	Mustela nivalis	Vertebrates	Mammalia	Likely
Rock vole	Microtus chrotorrhinus	Vertebrates	Mammalia	Likely
Southern bog lemming	Synaptomys cooperi	Vertebrates	Mammalia	Likely

Common name	Latin name	Group	Class	Status
Silver-haired bat	Lasionycteris noctivagans	Vertebrates	Mammalia	Likely
Hoary bat	Lasiurus cinereus	Vertebrates	Mammalia	Likely
Eastern small-footed bat	Myotis leibii	Vertebrates	Mammalia	Likely
Eastern red bat	Lasiurus borealis	Vertebrates	Mammalia	Likely
Southern flying squirrel	Glaucomys volans	Vertebrates	Mammalia	Likely
Tri-coloured bat	Perimyotis subflavus	Vertebrates	Mammalia	Likely
Copper redhorse	Moxostoma hubbsi	Vertebrates	Osteichthyes	Threatened
Stonecat	Noturus flavus	Vertebrates	Osteichthyes	Likely
Margined madtom	Noturus insignis	Vertebrates	Osteichthyes	Likely
Lake herring	Coregonus artedi pop. 1	Vertebrates	Osteichthyes	Likely
Lake sturgeon	Acipenser fulvescens	Vertebrates	Osteichthyes	Likely
Brassy minnow	Hybognathus hankinsoni	Vertebrates	Osteichthyes	Likely
Landlocked arctic char	Salvelinus alpinus oquassa	Vertebrates	Osteichthyes	Likely
American shad	Alosa sapidissima	Vertebrates	Osteichthyes	Vulnerable
River redhorse	Moxostoma carinatum	Vertebrates	Osteichthyes	Vulnerable
Channel darter	Percina copelandi	Vertebrates	Osteichthyes	Vulnerable
Bridle shiner	Notropis bifrenatus	Vertebrates	Osteichthyes	Vulnerable
Blanding's turtle	Emydoidea blandingii	Vertebrates	Reptilia	Threatened
Common musk turtle	Sternotherus odoratus	Vertebrates	Reptilia	Threatened
Spiny soft-shell turtle	Apalone spinifera	Vertebrates	Reptilia	Threatened
Ringneck snake	Diadophis punctatus	Vertebrates	Reptilia	Likely
Northern watersnake	Nerodia sipedon	Vertebrates	Reptilia	Likely
Eastern ribbon snake	Thamnophis sauritus	Vertebrates	Reptilia	Likely
Milk snake	Lampropeltis triangulum	Vertebrates	Reptilia	Likely
Smooth green snake	Opheodrys vernalis	Vertebrates	Reptilia	Likely
Wood turtle	Glyptemys insculpta	Vertebrates	Reptilia	Vulnerable
Northern map turtle	Graptemys geographica	Vertebrates	Reptilia	Vulnerable

CDPNQ (2014). Extracted from the data system for the territory of the Outaouais watershed, Centre de données sur le patrimoine naturel du Québec (CDPNQ), Québec, Ministère des Forêts, de la Faune et des Parcs.

Plant species

Common name	Latin name	Group	Class	Status
Round notothylas	Notothylas orbicularis	Non-vascular	Anthocerotopsida	Likely
Blind's bryum	Bryum blindii	Non-vascular	Bryopsida	Likely
Slender silver moss	Anomobryum julaceum	Non-vascular	Bryopsida	Likely
Beaked bow moss	Dicranodontium denudatum	Non-vascular	Bryopsida	Likely
Olive beard moss	Didymodon tophaceus	Non-vascular	Bryopsida	Likely
Pale cow-hair moss	Ditrichum pallidum	Non-vascular	Bryopsida	Likely
Serrated earth moss	Ephemerum serratum	Non-vascular	Bryopsida	Likely
Blunt pocket moss	Fissidens obtusifolius	Non-vascular	Bryopsida	Likely
Olney's grimmia	Grimmia olneyi	Non-vascular	Bryopsida	Likely
Hair grimmia	Grimmia pilifera	Non-vascular	Bryopsida	Likely
Blunt Leske's moss	Leskea obscura	Non-vascular	Bryopsida	Likely
Ohio haircap moss	Polytrichastrum ohioense	Non-vascular	Bryopsida	Likely
Mountain brook moss	Hygrohypnum montanum	Non-vascular	Bryopsida	Likely
Denticulate-leaved brook moss	Hygrohypnum subeugyrium	Non-vascular	Bryopsida	Likely
Common thelia	Thelia hirtella	Non-vascular	Bryopsida	Likely
Rough thelia	Thelia asprella	Non-vascular	Bryopsida	Likely
Tiny cedar moss	Pelekium minutulum	Non-vascular	Bryopsida	Likely
Pygmy cedar moss	Pelekium pygmaeum	Non-vascular	Bryopsida	Likely
Small twisted moss	Tortella humilis	Non-vascular	Bryopsida	Likely
Naked flag moss	Discelium nudum	Non-vascular	Bryopsida	Likely
Bordered brook moss	Platylomella lescurii	Non-vascular	Bryopsida	Likely
Somerfelt's fine wet moss	Campylophyllum sommerfeltii	Non-vascular	Bryopsida	Likely
Chalk comb moss	Ctenidium subrectifolium	Non-vascular	Bryopsida	Likely
Pale bristle moss	Orthotrichum pallens	Non-vascular	Bryopsida	Likely
Fan moss	Forsstroemia trichomitria	Non-vascular	Bryopsida	Likely
Delicate starwort	Asterella tenella	Non-vascular	Jungermanniopsida	Likely
Drummond's flapwort	Harpanthus drummondii	Non-vascular	Jungermanniopsida	Likely
Fragrant macewort	Mannia fragrans	Non-vascular	Jungermanniopsida	Likely
Rock veilwort	Metzgeria conjugata	Non-vascular	Jungermanniopsida	Likely
Pinnate scalewort	Porella pinnata	Non-vascular	Jungermanniopsida	Likely
Cavernous crystalwort	Riccia cavernosa	Non-vascular	Jungermanniopsida	Likely
Frost's crystalwort	Riccia frostii	Non-vascular	Jungermanniopsida	Likely

Common name	Latin name	Group	Class	Status
Sullivant's crystalwort	Riccia huebeneriana ssp. sullivantii	Non-vascular	Jungermanniopsida	Likely
Lizard crystalwort	Riccia bifurca	Non-vascular	Jungermanniopsida	Likely
Butterflyweed	Asclepias tuberosa var. interior	Vascular	Dicotyledoneae	Threatened
American ginseng	Panax quinquefolius	Vascular	Dicotyledoneae	Threatened
Lizard's-tail	Saururus cernuus	Vascular	Dicotyledoneae	Threatened
James' monkeyflower	Mimulus glabratus var. jamesii	Vascular	Dicotyledoneae	Threatened
Spotted beebalm	Monarda punctata var. villicaulis	Vascular	Dicotyledoneae	Threatened
Rock elm	Ulmus thomasii	Vascular	Dicotyledoneae	Threatened
Mayapple	Podophyllum peltatum	Vascular	Dicotyledoneae	Threatened
Woodland pinedrops	Pterospora andromedea	Vascular	Dicotyledoneae	Threatened
Climbing fumitory	Adlumia fungosa	Vascular	Dicotyledoneae	Likely
Catnip giant hyssop	Agastache nepetoides	Vascular	Dicotyledoneae	Likely
Hairy agrimony	Agrimonia pubescens	Vascular	Dicotyledoneae	Likely
Beautiful serviceberry	Amelanchier amabilis	Vascular	Dicotyledoneae	Likely
Collins' rockcress	Boechera collinsii	Vascular	Dicotyledoneae	Likely
Sicklepod	Boechera canadensis	Vascular	Dicotyledoneae	Likely
Reflexed rockcress	Boechera retrofracta	Vascular	Dicotyledoneae	Likely
Lakecress	Rorippa aquatica	Vascular	Dicotyledoneae	Likely
Interior white aster	Symphyotrichum lanceolatum ssp. lanceolatum var. interior	Vascular	Dicotyledoneae	Likely
Pringle's aster	Symphyotrichum pilosum var. pringlei	Vascular	Dicotyledoneae	Likely
Robyns' aster	Symphyotrichum robynsianum -p07, p15	Vascular	Dicotyledoneae	Likely
Indian milkvetch	Astragalus australis	Vascular	Dicotyledoneae	Likely
Caughnawaga thorn	Crataegus suborbiculata	Vascular	Dicotyledoneae	Likely
Smooth alder	Alnus serrulata	Vascular	Dicotyledoneae	Likely
Virginia bartonia	Bartonia virginica	Vascular	Dicotyledoneae	Likely
Largeleaf avens	Geum macrophyllum var. perincisum	Vascular	Dicotyledoneae	Likely
Spring cress	Cardamine bulbosa	Vascular	Dicotyledoneae	Likely
Cutleaf toothwort	Cardamine concatenata	Vascular	Dicotyledoneae	Likely
Shagbark hickory	Carya ovata var. ovata	Vascular	Dicotyledoneae	Likely

Common name	Latin name	Group	Class	Status
New Jersey tea	Ceanothus americanus	Vascular	Dicotyledoneae	Likely
Jersey tea	Ceanothus herbaceus	Vascular	Dicotyledoneae	Likely
Long-stalked chickweed	Cerastium nutans var. nutans	Vascular	Dicotyledoneae	Likely
Susquehanna sand cherry	Prunus susquehanae	Vascular	Dicotyledoneae	Likely
Silverberry	Elaeagnus commutata	Vascular	Dicotyledoneae	Likely
Fogg's goosefoot	Chenopodium foggii	Vascular	Dicotyledoneae	Likely
Spotted wintergreen	Chimaphila maculata	Vascular	Dicotyledoneae	Likely
Swamp white oak	Quercus bicolor	Vascular	Dicotyledoneae	Likely
Narrow-leaved springbeauty	Claytonia virginica	Vascular	Dicotyledoneae	Likely
Golden corydalis	Corydalis aurea ssp. aurea	Vascular	Dicotyledoneae	Likely
Bare-stemmed tick-trefoil	Desmodium nudiflorum	Vascular	Dicotyledoneae	Likely
Panicled tick-trefoil	Desmodium paniculatum	Vascular	Dicotyledoneae	Likely
Wood whitlow-grass	Draba nemorosa	Vascular	Dicotyledoneae	Likely
Slenderleaf sundew	Drosera linearis	Vascular	Dicotyledoneae	Likely
Robinson's hawkweed	Hieracium robinsonii	Vascular	Dicotyledoneae	Likely
Licorice bedstraw	Galium circaezans	Vascular	Dicotyledoneae	Likely
Fringed gentian	Gentianopsis crinita	Vascular	Dicotyledoneae	Likely
Carolina crane's-bill	Geranium carolinianum	Vascular	Dicotyledoneae	Likely
Cream-coloured vetchling	Lathyrus ochroleucus	Vascular	Dicotyledoneae	Likely
Golden hedge hyssop	Gratiola aurea	Vascular	Dicotyledoneae	Likely
Rough pennyroyal	Hedeoma hispida	Vascular	Dicotyledoneae	Likely
Canada frostweed	Crocanthemum canadense	Vascular	Dicotyledoneae	Likely
Woolly beach-heather	Hudsonia tomentosa	Vascular	Dicotyledoneae	Likely
Hairy lettuce	Lactuca hirsuta	Vascular	Dicotyledoneae	Likely
Highbelia	Lobelia spicata	Vascular	Dicotyledoneae	Likely
Virginia water-horehound	Lycopus virginicus	Vascular	Dicotyledoneae	Likely
Laurentian bugleweed	Lycopus americanus var. Iaurentianus	Vascular	Dicotyledoneae	Likely
Lance-leaf loosestrife	Lysimachia hybrida	Vascular	Dicotyledoneae	Likely
Whorled yellow loosestrife	Lysimachia quadrifolia	Vascular	Dicotyledoneae	Likely
Kalm St. John's-wort	Hypericum kalmianum	Vascular	Dicotyledoneae	Likely
Marsh St. John's-wort	Hypericum virginicum	Vascular	Dicotyledoneae	Likely
Giant St. John's-wort	Hypericum ascyron ssp. pyramidatum	Vascular	Dicotyledoneae	Likely

Common name	Latin name	Group	Class	Status
Michaux's stichwort	Minuartia michauxii	Vascular	Dicotyledoneae	Likely
Green tansy mustard	Descurainia pinnata ssp. brachycarpa	Vascular	Dicotyledoneae	Likely
Variable-leaved water- milfoil	Myriophyllum heterophyllum	Vascular	Dicotyledoneae	Likely
Butternut	Juglans cinerea	Vascular	Dicotyledoneae	Likely
Meadow evening- primrose	Oenothera pilosella ssp. pilosella	Vascular	Dicotyledoneae	Likely
Carey's smartweed	Persicaria careyi	Vascular	Dicotyledoneae	Likely
Stout smartweed	Persicaria robustior	Vascular	Dicotyledoneae	Likely
American pokeweed	Phytolacca americana var. americana	Vascular	Dicotyledoneae	Likely
Purple meadow-rue	Thalictrum dasycarpum	Vascular	Dicotyledoneae	Likely
River-weed	Podostemum ceratophyllum	Vascular	Dicotyledoneae	Likely
Red-whiskered clammyweed	Polanisia dodecandra ssp. dodecandra	Vascular	Dicotyledoneae	Likely
Racemed milkwort	Polygala polygama	Vascular	Dicotyledoneae	Likely
Seneca milkwort	Polygala senega	Vascular	Dicotyledoneae	Likely
Northern jointweed	Polygonella articulata	Vascular	Dicotyledoneae	Likely
Marsh mermaidweed	Proserpinaca palustris	Vascular	Dicotyledoneae	Likely
Virginia mountain-mint	Pycnanthemum virginianum	Vascular	Dicotyledoneae	Likely
Yellow water-crowfoot	Ranunculus flabellaris	Vascular	Dicotyledoneae	Likely
Northern dewberry	Rubus flagellaris	Vascular	Dicotyledoneae	Likely
American bladdernut	Staphylea trifolia	Vascular	Dicotyledoneae	Likely
Poison sumac	Toxicodendron vernix	Vascular	Dicotyledoneae	Likely
Yellow pimpernel	Taenidia integerrima	Vascular	Dicotyledoneae	Likely
False pennyroyal	Trichostema brachiatum	Vascular	Dicotyledoneae	Likely
Humped bladderwort	Utricularia gibba	Vascular	Dicotyledoneae	Likely
Resupinate bladderwort	Utricularia resupinata	Vascular	Dicotyledoneae	Likely
Twin-scaped bladderwort	Utricularia geminiscapa	Vascular	Dicotyledoneae	Likely
Upland white aster	Solidago ptarmicoides	Vascular	Dicotyledoneae	Likely
Water speedwell	Veronica anagallis-aquatica	Vascular	Dicotyledoneae	Likely
American vetch	Vicia americana	Vascular	Dicotyledoneae	Likely
Sand violet	Viola affinis	Vascular	Dicotyledoneae	Likely
Arrowleaf violet	Viola sagittata var. ovata	Vascular	Dicotyledoneae	Likely
Longspur violet	Viola rostrata	Vascular	Dicotyledoneae	Likely

Common name	Latin name	Group	Class	Status
Arrowleaf violet	Viola sagittata var. sagittata	Vascular	Dicotyledoneae	Likely
Southern arrow-wood	Viburnum recognitum	Vascular	Dicotyledoneae	Likely
Squawroot	Conopholis americana	Vascular	Dicotyledoneae	Vulnerable
Black maple	Acer nigrum	Vascular	Dicotyledoneae	Vulnerable
Divaricate sunflower	Helianthus divaricatus	Vascular	Dicotyledoneae	Vulnerable
Douglas' knotweed	Polygonum douglasii	Vascular	Dicotyledoneae	Vulnerable
Fragrant sumac	Rhus aromatica var. aromatica	Vascular	Dicotyledoneae	Vulnerable
Wallrue spleenwort	Asplenium ruta-muraria	Vascular	Filicopsida	Threatened
Purple-stem cliff-brake	Pellaea atropurpurea	Vascular	Filicopsida	Threatened
Broad beech-fern	Phegopteris hexagonoptera	Vascular	Filicopsida	Threatened
Blunt-lobed woodsia	Woodsia obtusa ssp. obtusa	Vascular	Filicopsida	Threatened
Narrow-leaved glade fern	Diplazium pycnocarpon	Vascular	Filicopsida	Likely
Walking fern	Asplenium rhizophyllum	Vascular	Filicopsida	Likely
Ebony spleenwort	Asplenium platyneuron	Vascular	Filicopsida	Likely
Northern oak fern	Gymnocarpium jessoense ssp. parvulum	Vascular	Filicopsida	Likely
Smooth cliff-brake	Pellaea glabella ssp. glabella	Vascular	Filicopsida	Likely
Oregon cliff fern	Woodsia oregana ssp. cathcartiana	Vascular	Filicopsida	Likely
Virginia chain fern	Woodwardia virginica	Vascular	Filicopsida	Likely
Meadow spikemoss	Selaginella eclipes	Vascular	Isoetopsida	Likely
Puttyroot	Aplectrum hyemale	Vascular	Monocotyledoneae	Threatened
False hop sedge	Carex lupuliformis	Vascular	Monocotyledoneae	Threatened
Late coral-root	Corallorhiza odontorhiza var. odontorhiza	Vascular	Monocotyledoneae	Threatened
Southern twayblade	Listera australis	Vascular	Monocotyledoneae	Threatened
Slim-flowered muhly	Muhlenbergia tenuiflora	Vascular	Monocotyledoneae	Threatened
Weak-stalked bulrush	Schoenoplectus purshianus var. purshianus	Vascular	Monocotyledoneae	Threatened
Canada garlic	Allium canadense var. canadense	Vascular	Monocotyledoneae	Likely
Narrow-leaf blue-eyed grass	Sisyrinchium angustifolium	Vascular	Monocotyledoneae	Likely
Kalm's brome	Bromus kalmii	Vascular	Monocotyledoneae	Likely
Calypso orchid	Calypso bulbosa var. americana	Vascular	Monocotyledoneae	Likely

Common name	Latin name	Group	Class	Status
Silvery-flowered sedge	Carex argyrantha	Vascular	Monocotyledoneae	Likely
Compact sedge	Carex sychnocephala	Vascular	Monocotyledoneae	Likely
Bailey's sedge	Carex baileyi	Vascular	Monocotyledoneae	Likely
Mühlenberg's sedge	Carex muehlenbergii var. muehlenbergii	Vascular	Monocotyledoneae	Likely
Sartwell's sedge	Carex sartwellii	Vascular	Monocotyledoneae	Likely
Troublesome sedge	Carex molesta	Vascular	Monocotyledoneae	Likely
Appalachian sedge	Carex appalachica	Vascular	Monocotyledoneae	Likely
Prairie sedge	Carex prairea	Vascular	Monocotyledoneae	Likely
Bur-reed sedge	Carex sparganioides	Vascular	Monocotyledoneae	Likely
Folliculate sedge	Carex folliculata	Vascular	Monocotyledoneae	Likely
Cat-tail sedge	Carex typhina	Vascular	Monocotyledoneae	Likely
Prickly bog sedge	Carex atlantica ssp. capillacea	Vascular	Monocotyledoneae	Likely
Eastern few-fruited sedge	Carex oligocarpa	Vascular	Monocotyledoneae	Likely
Yellow-fruited sedge	Carex annectens	Vascular	Monocotyledoneae	Likely
Oval-headed sedge	Carex cephalophora	Vascular	Monocotyledoneae	Likely
Dry-spiked sedge	Carex siccata	Vascular	Monocotyledoneae	Likely
Striated coral-root	Corallorhiza striata var. striata	Vascular	Monocotyledoneae	Likely
Showy lady's-slipper	Cypripedium reginae	Vascular	Monocotyledoneae	Likely
Robbins' spikerush	Eleocharis robbinsii	Vascular	Monocotyledoneae	Likely
Slender fimbry	Fimbristylis autumnalis	Vascular	Monocotyledoneae	Likely
Roundleaf orchis	Galearis rotundifolia	Vascular	Monocotyledoneae	Likely
Showy orchis	Galearis spectabilis	Vascular	Monocotyledoneae	Likely
Pale false mannagrass	Torreyochloa pallida var. pallida	Vascular	Monocotyledoneae	Likely
Greater poverty rush	Juncus anthelatus	Vascular	Monocotyledoneae	Likely
Greene's rush	Juncus greenei	Vascular	Monocotyledoneae	Likely
Smith's melic grass	Melica smithii	Vascular	Monocotyledoneae	Likely
Woodland muhly	Muhlenbergia sylvatica	Vascular	Monocotyledoneae	Likely
Philadelphia panic-grass	Panicum philadelphicum	Vascular	Monocotyledoneae	Likely
Wiry panic-grass	Panicum flexile	Vascular	Monocotyledoneae	Likely
Switchgrass	Panicum virgatum	Vascular	Monocotyledoneae	Likely
Arrow arum	Peltandra virginica	Vascular	Monocotyledoneae	Likely

Common name	Latin name	Group	Class	Status
Greater roundleaved orchid	Platanthera macrophylla	Vascular	Monocotyledoneae	Likely
Palegreen orchid	Platanthera flava var. herbiola	Vascular	Monocotyledoneae	Likely
Illinois pondweed	Potamogeton illinoensis	Vascular	Monocotyledoneae	Likely
Vasey's pondweed	Potamogeton vaseyi	Vascular	Monocotyledoneae	Likely
Small pondweed	Potamogeton pusillus ssp. gemmiparus	Vascular	Monocotyledoneae	Likely
Drooping speargrass	Poa saltuensis ssp. languida	Vascular	Monocotyledoneae	Likely
Hair-like beak-rush	Rhynchospora capillacea	Vascular	Monocotyledoneae	Likely
Small-headed beak-rush	Rhynchospora capitellata	Vascular	Monocotyledoneae	Likely
Branched bur-reed	Sparganium androcladum	Vascular	Monocotyledoneae	Likely
Slender bulrush	Schoenoplectus heterochaetus	Vascular	Monocotyledoneae	Likely
Slender flatsedge	Cyperus lupulinus ssp. macilentus	Vascular	Monocotyledoneae	Likely
Rusty flatsedge	Cyperus odoratus	Vascular	Monocotyledoneae	Likely
Case's lady's-tresses	Spiranthes casei var. casei	Vascular	Monocotyledoneae	Likely
Shining lady's-tresses	Spiranthes lucida	Vascular	Monocotyledoneae	Likely
Poverty dropseed	Sporobolus vaginiflorus var. vaginiflorus	Vascular	Monocotyledoneae	Likely
Sand dropseed	Sporobolus cryptandrus	Vascular	Monocotyledoneae	Likely
Northern dropseed	Sporobolus heterolepis	Vascular	Monocotyledoneae	Likely
Rough dropseed	Sporobolus compositus var. compositus	Vascular	Monocotyledoneae	Likely
Clinton's bulrush	Trichophorum clintonii	Vascular	Monocotyledoneae	Likely
Northern watermeal	Wolffia borealis	Vascular	Monocotyledoneae	Likely
Annual wildrice	Zizania aquatica var. aquatica	Vascular	Monocotyledoneae	Likely
Wild leek	Allium tricoccum	Vascular	Monocotyledoneae	Vulnerable
Ram's head lady's-slipper	Cypripedium arietinum	Vascular	Monocotyledoneae	Vulnerable
Downy rattlesnake- plantain	Goodyera pubescens	Vascular	Monocotyledoneae	Vulnerable
Blunt-lobed grapefern	Botrychium oneidense	Vascular	Ophioglossopsida	Likely
Narrowleaf grapefern	Botrychium lineare	Vascular	Ophioglossopsida	Likely
St. Lawrence grapefern	Botrychium rugulosum	Vascular	Ophioglossopsida	Likely
Northern adder's-tongue	Ophioglossum pusillum	Vascular	Ophioglossopsida	Likely

Common name	Latin name	Group	Class	Status
Eastern redcedar	Juniperus virginiana var. virginiana	Vascular	Pinopsida	Likely

CDPNQ (2014). Extracted from the data system for the territory of the Outaouais watershed, Centre de données sur le patrimoine naturel du Québec (CDPNQ), Québec, Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques.

Appendix II. Characteristics of different types of wetlands

Shallow and deep water

- Pond: Water body of less than 8 hectares.
- Pool: Small body of shallow, stagnant water, susceptible to drying out; also refers to the pools in peat bogs.

Non-forested wetlands

- Herbaceous meadow (bogs, fens, undifferentiated marshes): Wetlands in which trees comprise less than 25% of the plant cover. Includes meadow marshes, emergent marshes, shoreline swamps, bogs and other types of wetlands classified as "wet barrens" in the ecoforestry map of the third ten-year inventory.
- Flooded swamp: A flooded swamp or recently flooded area dominated by still-standing dead trees.
- Shrubby swamp: Swamp primarily dominated by shrubs, particularly speckled alder (Alnus rugosa).

Forested wetlands

- Rich deciduous swamp: Forested swamp (over 25% of tree cover more than 10 m in height) in which deciduous species comprise more than 75% of the basal area of the stand, growing on a mineral deposit, with hydric drainage and minerotrophic trophic regime.
- Rich mixed swamp: Forested swamp (over 25% of tree cover more than 10 m in height) in which deciduous species comprise from 25% to 75% of the basal area of the stand, growing on a mineral or organic deposit, with hydric drainage and minerotrophic trophic regime.
- Rich coniferous swamp: Forested swamp (over 25% of tree cover more than 10 m in height) in which coniferous species comprise more than 75% of the basal area of the stand, growing on a mineral or organic deposit, with hydric drainage and minerotrophic regime.
- Poor coniferous swamp: Forested swamp (over 25% of tree cover more than 10 m in height) in which coniferous species comprise more than 75% of the basal area of the stand, growing on a mineral deposit, with hydric drainage and ombrotrophic regime.
- Very poor coniferous swamp: Forested swamp (over 25% of tree cover more than 10 m in height) in which coniferous species comprise more than 75% of the basal area of the stand, growing on an organic deposit, with hydric drainage and ombrotrophic regime.

Développement durable, Environnement et Lutte contre les changements climatiques

